ﻻ يوجد ملخص باللغة العربية
(Abridged) The abundance ratios between key elements such as iron and alpha-process elements carry a wealth of information on the star formation history (SFH) of galaxies. So far, simple chemical evolution models have linked [alpha/Fe] with the SFH timescale, correlating large abundance ratios with short-lived SFH. We provide an empirical correlation between [alpha/Fe] (measured from spectral indices) and the SFH (determined via a non-parametric spectral-fitting method). We offer an empirical version of the iconic outline of Thomas et al. (2005), relating star formation timescale with galaxy mass, although our results suggest, in contrast, a significant population of old (>10Gyr) stars even for the lowest mass ellipticals. In addition, the abundance ratio is found to be strongly correlated with the time to build up the stellar component, showing that the highest [alpha/Fe] (>+0.2) are attained by galaxies with the shortest half-mass formation time (<2Gyr), or equivalently, with the smallest (<40%) fraction of populations younger than 10Gyr. These observational results support the standard hypothesis that star formation incorporates the Fe-enriched interstellar medium into stars, lowering the high abundance ratio of the old populations.
We use deep HST ACS/HRC observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5Gyr old stars contribute som40%+/- 17% of M32s
Understanding star formation rates (SFR) is a central goal of modern star-formation models, which mainly involve gravity, turbulence and, in some cases, magnetic fields (B-fields). However, a connection between B-fields and SFR has never been observe
The goal of the Ariel space mission is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. The planetary bulk and atmospheric compositions bear
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environ
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the