ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Conic Reformulations for K-means Clustering

65   0   0.0 ( 0 )
 نشر من قبل Grani Adiwena Hanasusanto
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP) relaxation that is tighter than the current SDP relaxation schemes in the literature. In contrast to the existing schemes, our proposed SDP formulation gives rise to solutions that can be leveraged to identify the clusters. We devise a new approximation algorithm for K-means clustering that utilizes the improved formulation and empirically illustrate its superiority over the state-of-the-art solution schemes.



قيم البحث

اقرأ أيضاً

Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dimensions. Specifically, when the ambiguity set constitutes a 2-Wasserstein ball centered at a discrete distribution, then the distributionally robust linear program is equivalent to a copositive program (if the problem has complete recourse) or can be approximated arbitrarily closely by a sequence of copositive programs (if the problem has sufficiently expensive recourse). These results directly extend to the classical robust setting and motivate strong tractable approximations of two-stage problems based on semidefinite approximations of the copositive cone. We also demonstrate that the two-stage distributionally robust optimization problem is equivalent to a tractable linear program when the ambiguity set constitutes a 1-Wasserstein ball centered at a discrete distribution and there are no support constraints.
The number of accidents and health diseases which are increasing at an alarming rate are resulting in a huge increase in the demand for blood. There is a necessity for the organized analysis of the blood donor database or blood banks repositories. Cl ustering analysis is one of the data mining applications and K-means clustering algorithm is the fundamental algorithm for modern clustering techniques. K-means clustering algorithm is traditional approach and iterative algorithm. At every iteration, it attempts to find the distance from the centroid of each cluster to each and every data point. This paper gives the improvement to the original k-means algorithm by improving the initial centroids with distribution of data. Results and discussions show that improved K-means algorithm produces accurate clusters in less computation time to find the donors information.
This paper considers $k$-means clustering in the presence of noise. It is known that $k$-means clustering is highly sensitive to noise, and thus noise should be removed to obtain a quality solution. A popular formulation of this problem is called $k$ -means clustering with outliers. The goal of $k$-means clustering with outliers is to discard up to a specified number $z$ of points as noise/outliers and then find a $k$-means solution on the remaining data. The problem has received significant attention, yet current algorithms with theoretical guarantees suffer from either high running time or inherent loss in the solution quality. The main contribution of this paper is two-fold. Firstly, we develop a simple greedy algorithm that has provably strong worst case guarantees. The greedy algorithm adds a simple preprocessing step to remove noise, which can be combined with any $k$-means clustering algorithm. This algorithm gives the first pseudo-approximation-preserving reduction from $k$-means with outliers to $k$-means without outliers. Secondly, we show how to construct a coreset of size $O(k log n)$. When combined with our greedy algorithm, we obtain a scalable, near linear time algorithm. The theoretical contributions are verified experimentally by demonstrating that the algorithm quickly removes noise and obtains a high-quality clustering.
Clustering methods such as k-means have found widespread use in a variety of applications. This paper proposes a formal testing procedure to determine whether a null hypothesis of a single cluster, indicating homogeneity of the data, can be rejected in favor of multiple clusters. The test is simple to implement, valid under relatively mild conditions (including non-normality, and heterogeneity of the data in aspects beyond those in the clustering analysis), and applicable in a range of contexts (including clustering when the time series dimension is small, or clustering on parameters other than the mean). We verify that the test has good size control in finite samples, and we illustrate the test in applications to clustering vehicle manufacturers and U.S. mutual funds.
We address the problem of simultaneously learning a k-means clustering and deep feature representation from unlabelled data, which is of interest due to the potential of deep k-means to outperform traditional two-step feature extraction and shallow-c lustering strategies. We achieve this by developing a gradient-estimator for the non-differentiable k-means objective via the Gumbel-Softmax reparameterisation trick. In contrast to previous attempts at deep clustering, our concrete k-means model can be optimised with respect to the canonical k-means objective and is easily trained end-to-end without resorting to alternating optimisation. We demonstrate the efficacy of our method on standard clustering benchmarks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا