ﻻ يوجد ملخص باللغة العربية
The number of accidents and health diseases which are increasing at an alarming rate are resulting in a huge increase in the demand for blood. There is a necessity for the organized analysis of the blood donor database or blood banks repositories. Clustering analysis is one of the data mining applications and K-means clustering algorithm is the fundamental algorithm for modern clustering techniques. K-means clustering algorithm is traditional approach and iterative algorithm. At every iteration, it attempts to find the distance from the centroid of each cluster to each and every data point. This paper gives the improvement to the original k-means algorithm by improving the initial centroids with distribution of data. Results and discussions show that improved K-means algorithm produces accurate clusters in less computation time to find the donors information.
In this paper, we show that the popular K-means clustering problem can equivalently be reformulated as a conic program of polynomial size. The arising convex optimization problem is NP-hard, but amenable to a tractable semidefinite programming (SDP)
We address the problem of simultaneously learning a k-means clustering and deep feature representation from unlabelled data, which is of interest due to the potential of deep k-means to outperform traditional two-step feature extraction and shallow-c
textit{Clustering problems} often arise in the fields like data mining, machine learning etc. to group a collection of objects into similar groups with respect to a similarity (or dissimilarity) measure. Among the clustering problems, specifically te
This paper considers $k$-means clustering in the presence of noise. It is known that $k$-means clustering is highly sensitive to noise, and thus noise should be removed to obtain a quality solution. A popular formulation of this problem is called $k$
We propose a novel method to accelerate Lloyds algorithm for K-Means clustering. Unlike previous acceleration approaches that reduce computational cost per iterations or improve initialization, our approach is focused on reducing the number of iterat