ترغب بنشر مسار تعليمي؟ اضغط هنا

The prevalence of core emission in faint radio galaxies in the SKA Simulated Skies

125   0   0.0 ( 0 )
 نشر من قبل Imogen Whittam
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirical simulations based on extrapolations from well-established low-frequency ($< 5$ GHz) surveys fail to accurately model the faint, high frequency ($>10$~GHz) source population; they under-predict the number of observed sources by a factor of two below $S_{18~rm GHz} = 10$ mJy and fail to reproduce the observed spectral index distribution. We suggest that this is because the faint radio galaxies are not modelled correctly in the simulations and show that by adding a flat-spectrum core component to the FRI sources in the SKA Simulated Skies, the observed 15-GHz source counts can be reproduced. We find that the observations are best matched by assuming that the fraction of the total 1.4-GHz flux density which originates from the core varies with 1.4-GHz luminosity; sources with 1.4-GHz luminosities $< 10^{25} rm W , Hz^{-1}$ require a core fraction $sim 0.3$, while the more luminous sources require a much smaller core fraction of $5 times 10^{-4}$. The low luminosity FRI sources with high core fractions which were not included in the original simulation may be equivalent to the compact `FR0 sources found in recent studies.



قيم البحث

اقرأ أيضاً

The S3-Tools are a set of Python-based routines and interfaces whose purpose is to provide user-friendly access to the SKA Simulated Skies (S3) set of simulations, an effort led by the University of Oxford in the framework of the European Unions SKAD S program (http://www.skads-eu.org). The databases built from the S3 simulations are hosted by the Oxford e-Research Center (OeRC), and can be accessed through a web portal at http://s-cubed.physics.ox.ac.uk. This paper focuses on the practical steps involved to make radio images from the S3-SEX and S3-SAX simulations using the S3-Map tool and should be taken as a broad overview. For a more complete description, the interested reader should look up the users guide. The output images can then be used as input to instrument simulators, e.g. to assess technical designs and observational strategies for the SKA and SKA pathfinders.
128 - C. Mancuso , A. Lapi , Z-Y. Cai 2014
We have combined determinations of the epoch-dependent star formation rate (SFR) function with relationships between SFR and radio (synchrotron and free-free) emission to work out detailed predictions for the counts and the redshift distributions of star-forming galaxies detected by planned Square Kilometer Array (SKA) surveys. The evolving SFR function comes from recent models fitting the far-infrared (FIR) to millimeter-wave luminosity functions and the ultraviolet (UV) luminosity functions up to z=10, extended to take into account additional UV survey data. We used very deep 1.4 GHz number counts from the literature to check the relationship between SFR and synchrotron emission, and the 95 GHz South Pole Telescope (SPT) counts of dusty galaxies to test the relationship between SFR and free-free emission. We show that the SKA will allow us to investigate the SFRs of galaxies down to few Msun/yr up to z=10, thus extending by more than two orders of magnitude the high-z SFR functions derived from Herschel surveys. SKA1-MID surveys, down to microJy levels, will detect hundreds of strongly lensed galaxies per square degree; a substantial fraction of them will show at least two images above the detection limits.
114 - X. H. Sun Naoc 2009
(Abridged) We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 deg in size and have an angular resolution of about 1.6 arcsec. We analyse the map s in terms of their probability density functions (PDFs) and structure functions. Total intensity emission is more smooth in the plane than at high latitudes due to the different contributions from the regular and random magnetic field. The high latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures on very small scales dominate. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from the fact that much more turbulent cells are passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths of the line-of-sights.
The missing baryons are usually thought to reside in galaxy filaments as warm-hot intergalactic medium (WHIM). From previous studies, giant radio galaxies are usually associated with galaxy groups, which normally trace the WHIM. We propose observatio ns with the powerful SKA1 to make a census of giant radio galaxies in the southern hemisphere, which will probe the ambient WHIM. The radio galaxies discovered will also be investigated to search for dying radio sources. With the highly improved sensitivity and resolution of SKA1, more than 6,000 giant radio sources will be discovered within 250 hours.
The Shapley Concentration ($zapprox0.048$) covers several degrees in the Southern Hemisphere, and includes galaxy clusters in advanced evolutionary stage, groups of clusters in the early stages of merger, fairly massive clusters with ongoing accretio n activity, and smaller groups located in filaments in the regions between the main clusters. With the goal to investigate the role of cluster mergers and accretion on the radio galaxy population, we performed a multi-wavelength study of the BCGs and of the galaxies showing extended radio emission in the cluster complexes of Abell 3528 and Abell 3558. Our study is based on a sample of 12 galaxies. We observed the clusters with the GMRT at 235, 325 and 610 MHz, and with the VLA at 8.46 GHz. We complemented our study with the TGSS at 150 MHz, the SUMSS at 843 MHz and ATCA at 1380, 1400, 2380, and 4790 MHz data. Optical imaging with ESO-VST and mid-IR coverage with WISE are also available for the host galaxies. We found deep differences in the properties of the radio emission of the BCGs in the two cluster complexes. The BCGs in the A3528 complex and in A3556, which are relaxed cool-core objects, are powerful active radio galaxies. They also present hints of restarted activity. On the contrary, the BCGs in A3558 and A3562, which are well known merging systems, are very faint, or quiet, in the radio band. The optical and IR properties of the galaxies are fairly similar in the two complexes, showing all passive red galaxies. Our study shows remarkable differences in the radio properties of the BGCs, which we relate to the different dynamical state of the host cluster. On the contrary, the lack of changes between such different environments in the optical band suggests that the dynamical state of galaxy clusters does not affect the optical counterparts of the radio galaxies, at least over the life-time of the radio emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا