ﻻ يوجد ملخص باللغة العربية
We study the eigenstate phases of disordered spin chains with on-site finite non-Abelian symmetry. We develop a general formalism based on standard group theory to construct local spin Hamiltonians invariant under any on-site symmetry. We then specialize to the case of the simplest non-Abelian group, $S_3$, and numerically study a particular two parameter spin-1 Hamiltonian. We observe a thermal phase and a many-body localized phase with a spontaneous symmetry breaking (SSB) from $S_3$ to $mathbb{Z}_3$ in our model Hamiltonian. We diagnose these phases using full entanglement distributions and level statistics. We also use a spin-glass diagnostic specialized to detect spontaneous breaking of the $S_3$ symmetry down to $mathbb{Z}_3$. Our observed phases are consistent with the possibilities outlined by Potter and Vasseur [Phys. Rev. B 94, 224206 (2016)], namely thermal/ ergodic and spin-glass many-body localized (MBL) phases. We also speculate about the nature of an intermediate region between the thermal and MBL+SSB regions where full $S_3$ symmetry exists.
An important challenge in the field of many-body quantum dynamics is to identify non-ergodic states of matter beyond many-body localization (MBL). Strongly disordered spin chains with non-Abelian symmetry and chains of non-Abelian anyons are natural
Many phases of matter, including superconductors, fractional quantum Hall fluids and spin liquids, are described by gauge theories with constrained Hilbert spaces. However, thermalization and the applicability of quantum statistical mechanics has pri
Recent study predicts that structural disorder, serving as a bridge connecting a crystalline material to an amorphous material, can induce a topological insulator from a trivial phase. However, to experimentally observe such a topological phase trans
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three dimensional spinless $p_x+ip_y$ superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions in class D of the Altland-Zirnbauer
We examine the stability of marginally Anderson localized phase transitions between localized phases to the addition of many-body interactions, focusing in particular on the spin-glass to paramagnet transition in a disordered transverse field Ising m