ﻻ يوجد ملخص باللغة العربية
We study the time evolution of quenched random-mass Dirac fermions in one dimension by quantum lattice Boltzmann simulations. For nonzero noise strength, the diffusion of an initial wave packet stops after a finite time interval, reminiscent of Anderson localization. However, instead of exponential localization we find algebraically decaying tails in the disorder-averaged density distribution. These qualitatively match $propto x^{-3/2}$ decay, which has been predicted by analytic calculations based on zero-energy solutions of the Dirac equation.
We present quantum Lattice Boltzmann simulations of the Dirac equation for quantum-relativistic particles with random mass. By choosing zero-average random mass fluctuation, the simulations show evidence of localization and ultra-slow Sinai diffusion
S=1/2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In par
We develop a relativistic lattice Boltzmann (LB) model, providing a more accurate description of dissipative phenomena in relativistic hydrodynamics than previously available with existing LB schemes. The procedure applies to the ultra-relativistic r
We describe how regularization of lattice Boltzmann methods can be achieved by modifying dissipation. Classes of techniques used to try to improve regularization of LBMs include flux limiters, enforcing the exact correct production of entropy and man
We investigate in detail the interaction between the spin-${1/2}$ fields endowed with mass dimension one and the graviton. We obtain an interaction vertex that combines the characteristics of scalar-graviton and Diracs fermion-graviton vertices, due