ﻻ يوجد ملخص باللغة العربية
We present quantum Lattice Boltzmann simulations of the Dirac equation for quantum-relativistic particles with random mass. By choosing zero-average random mass fluctuation, the simulations show evidence of localization and ultra-slow Sinai diffusion, due to the interference of oppositely propagating branches of the quantum wavefunction which result from random sign changes of the mass around a zero-mean. The present results indicate that the quantum lattice Boltzmann scheme may offer a viable tool for the numerical simulation of quantum-relativistic transport phenomena in topological materials.
We study the time evolution of quenched random-mass Dirac fermions in one dimension by quantum lattice Boltzmann simulations. For nonzero noise strength, the diffusion of an initial wave packet stops after a finite time interval, reminiscent of Ander
Anomalous short- and long-time self-diffusion of non-overlapping fractal particles on a percolation cluster with spreading dimension $1.67(2)$ is studied by dynamic Monte Carlo simulations. As reported in Phys. Rev. Lett. 115, 097801 (2015), the diso
S=1/2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In par
To the present day, the Beenakker-Mazur (BM) method is the most comprehensive statistical physics approach to the calculation of short-time transport properties of colloidal suspensions. A revised version of the BM method with an improved treatment o
The diffusion of an artificial active particle in a two-dimensional periodic pattern of stationary convection cells is investigated by means of extensive numerical simulations. In the limit of large Peclet numbers, i.e., for self-propulsion speeds be