ﻻ يوجد ملخص باللغة العربية
We consider a second degree algebraic curve describing a general conic constraint imposed on the motion of a massive spinless particle. The problem is trivial at classical level but becomes involved and interesting in its quantum counterpart with subtleties in its symplectic structure and symmetries. The model is used here to investigate quantization issues related to the Hamiltonian constraint structure, Dirac brackets, gauge symmetry and BRST transformations. We pursue the complete constraint analysis in phase space and perform the Faddeev-Jackiw symplectic quantization following the Barcelos-Wotzasek iteration program to unravel the fine tuned and more relevant aspects of the constraint structure. A comparison with the longer usual Dirac-Bergmann algorithm, still more well established in the literature, is also presented. While in the standard DB approach there are four second class constraints, in the FJBW they reduce to two. By using the symplectic potential obtained in the last step of the FJBW iteration process we construct a gauge invariant model exhibiting explicitly its BRST symmetry. Our results reproduce and neatly generalize the known BRST symmetry of the rigid rotor showing that it constitutes a particular case of a broader class of theories.
We present the BRST cohomologies of a class of constraint (super) Lie algebras as detour complexes. By giving physical interpretations to the components of detour complexes as gauge invariances, Bianchi identities and equations of motion we obtain a
We discuss the BRST quantization of General Relativity (GR) with a cosmological constant in the unimodular gauge. We show how to gauge fix the transverse part of the diffeomorphism and then further to fulfill the unimodular gauge. This process requir
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxilia
A constrained BRST-BV Lagrangian formulation for totally symmetric massless HS fields in a $d$-dimensional Minkowski space is extended to a non-minimal constrained BRST-BV Lagrangian formulation by using a non-minimal BRST operator $Q_{c|mathrm{tot}}
Background: Models based on using perturbative polarization corrections and mean-field blocking approximation give conflicting results for masses of odd nuclei. Purpose: Systematically investigate the polarization and mean-field models, implemented