ﻻ يوجد ملخص باللغة العربية
We present a local setup for the recently introduced BRST-invariant formulation of Yang-Mills theories for linear covariant gauges that takes into account the existence of gauge copies `a la Gribov and Zwanziger. Through the convenient use of auxiliary fields, including one of the Stueckelberg type, it is shown that both the action and the associated nilpotent BRST operator can be put in local form. Direct consequences of this fully local and BRST-symmetric framework are drawn from its Ward identities: (i) an exact prediction for the longitudinal part of the gluon propagator in linear covariant gauges that is compatible with recent lattice results and (ii) a proof of the gauge-parameter independence of all correlation functions of local BRST-invariant operators.
In order to construct a gauge invariant two-point function in a Yang-Mills theory, we propose the use of the all-order gauge invariant transverse configurations A^h. Such configurations can be obtained through the minimization of the functional A^2_{
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi
The spectral properties of a set of local gauge (BRST) invariant composite operators are investigated in the $SU(2)$ Yang--Mills--Higgs model with a single Higgs field in the fundamental representation, quantized in the t Hooft $R_{xi}$-gauge. These
We address the issue of the renormalizability of the gauge-invariant non-local dimension-two operator $A^2_{rm min}$, whose minimization is defined along the gauge orbit. Despite its non-local character, we show that the operator $A^2_{rm min}$ can b
It is shown how, starting from a mapping theorem recently proved between massless quartic scalar field theory and Yang-Mills theory, both two-point functions and spectrum of the Yang-Mills theory can be obtained. These results compare very well with respect to lattice computations.