ترغب بنشر مسار تعليمي؟ اضغط هنا

IRTF/TEXES Observations of the HII Regions H1 and H2 in the Galactic Centre

244   0   0.0 ( 0 )
 نشر من قبل Hui Dong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new [Ne II] (12.8 micron) IRTF/TEXES observations of the Galactic Center HII regions H1 and H2, which are at a projected distance of ~11 pc from the center of the Galaxy. The new observations allow to map the radial velocity distributions of ionized gas. The high spectroscopic resolution (~4 km/s) helps us to disentangle different velocity components and enables us to resolve previous ambiguity regarding the nature of these sources. The spatial distributions of the intensity and radial velocity of the [Ne II] line are mapped. In H1, the intensity distributions of the Paschen-alpha (1.87 micron) and [Ne II] lines are significantly different, which suggests a strong variation of extinction across the HII region of A_K~0.56. The radial velocity distributions across these HII regions are consistent with the predictions of a bow-shock model for H1 and the pressure-driven model for H2. Furthermore, we find a concentration of bright stars in H2. These stars have similar H-K_s colors and can be explained as part of a 2 Myr old stellar cluster. H2 also falls on the orbit of the molecular clouds, suggested to be around Sgr A*. Our new results confirm what we had previously suggested: the O supergiant P114 in H1 is a runaway star, moving towards us through the -30-0 {km/s} molecular cloud, whereas the O If star P35 in H2 formed in-situ, and may mark the position of a so-far unknown small star cluster formed within the central 30 pc of the Galaxy.



قيم البحث

اقرأ أيضاً

We describe the TEXES survey for mid-IR H2 pure rotational emission from young stars and report early successes. H2 emission is a potential tracer of warm gas in circumstellar disks. Three pure rotational lines are available from the ground: the J=3= >1, J=4=>2, and J=6=>4, transitions at 17.035 microns, 12.279 microns, and 8.025 microns, respectively. Using TEXES at the NASA IRTF 3m, we are midway through a survey of roughly 30 pre-main-sequence stars. To date, detected lines are all resolved, generally with FWHM<10 km/s. Preliminary analysis suggests the gas temperatures are between 400 and 800 K. From the work so far, we conclude that high spectral and spatial resolution are critical to the investigation of H2 in disks.
We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic hii regions citep{ander son2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII region infrared flux densities are strongly correlated with their ~20 cm flux densities. All HII regions used here, regardless of physical size or Galactocentric radius, have similar infrared to radio flux density ratios and similar infrared colors, although the smallest regions ($r<1,$pc), have slightly elevated IR to radio ratios. The colors $log_{10}(F_{24 micron}/F_{12 micron}) ge 0$ and $log_{10}(F_{70 micron}/F_{12 micron}) ge 1.2$, and $log_{10}(F_{24 micron}/F_{12 micron}) ge 0$ and $log_{10}(F_{160 micron}/F_{70 micron}) le 0.67$ reliably select HII regions, independent of size. The infrared colors of ~22$%$ of HII regions, spanning a large range of physical sizes, satisfy the IRAS color criteria of citet{wood1989} for HII regions, after adjusting the criteria to the wavelengths used here. Since these color criteria are commonly thought to select only ultra-compact HII regions, this result indicates that the true ultra-compact HII region population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher $log_{10}(F_{70 micron}/F_{12 micron})$ ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing $R_{gal}$, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.
We have carried out the largest and most unbiased search for hypercompact (HC) HII regions. Our method combines four interferometric radio continuum surveys (THOR, CORNISH, MAGPIS and White2005) with far-infrared and sub-mm Galactic Plane surveys to identify embedded HII regions with positive spectral indices. 120 positive spectrum HII regions have been identified from a total sample of 534 positive spectral index radio sources. None of these HII regions, including the known HCHII regions recovered in our search, fulfills the canonical definition of an HCHII region at 5 GHz. We suggest that the current canonical definition of HCHII regions is not accurate and should be revised to include a hierarchical structure of ionized gas that results in an extended morphology at 5 GHz. Correlating our search with known ultracompact (UC) HII region surveys, we find that roughly half of detected UCHII regions have positive spectral indices, instead of more commonly assumed flat and optically thin spectra. This implies a mix of optically thin and thick emission and has important implications for previous analyses which have so far assumed optically thin emission for these objects. Positive spectrum HII regions are statistically more luminous and possess higher Lyman continuum fluxes than HII regions with flat or negative indices. Positive spectrum HII regions are thus more likely to be associated with more luminous and massive stars. No differences are found in clump mass, linear diameter or luminosity-to-mass ratio between positive spectrum and non-positive spectrum HII regions.
226 - R. Paladini 2009
We have re-analyzed continuum and recombination lines radio data available in the literature in order to derive the luminosity function (LF) of Galactic HII regions. The study is performed by considering the first and fourth Galactic quadrants indepe ndently. We estimate the completeness level of the sample in the fourth quadrant at 5 Jy, and the one in the first quadrant at 2 Jy. We show that the two samples (fourth or first quadrant) include, as well as giant and super-giant HII regions, a significant number of sub-giant sources. The LF is obtained, in each Galactic quadrant, with a generalized Schmidts estimator using an effective volume derived from the observed spatial distribution of the considered HII regions. The re-analysis also takes advantage of recently published ancillary absorption data allowing to solve the distance ambiguity for several objects. A single power-law fit to the LFs retrieves a slope equal to -2.23+/-0.07 (fourth quadrant) and to -1.85+/-0.11 (first quadrant). We also find marginal evidence of a luminosity break at L_knee = 10^23.45 erg s^(-1) Hz^(-1) for the LF in the fourth quadrant. We convert radio luminosities into equivalent H_alpha and Lyman continuum luminosities to facilitate comparisons with extra-galactic studies. We obtain an average total HII regions Lyman continuum luminosity of 0.89 +/- 0.23 * 10^(53) sec^(-1), corresponding to 30% of the total ionizing luminosity of the Galaxy.
Triggered star formation around HII regions could be an important process. The Galactic HII region RCW 79 is a prototypical object for triggered high-mass star formation. We take advantage of Herschel data from the surveys HOBYS, Evolution of Interst ellar Dust, and Hi-Gal to extract compact sources in this region, complemented with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. We obtained a sample of 50 compact sources, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 $M_odot$, densities of 0.1-44 $times$ $10^5$ cm$^{-3}$, and luminosities of 19-12712 $L_odot$. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 $M_odot$, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا