ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel observations of the Galactic HII region RCW 79

64   0   0.0 ( 0 )
 نشر من قبل Hong-Li Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Triggered star formation around HII regions could be an important process. The Galactic HII region RCW 79 is a prototypical object for triggered high-mass star formation. We take advantage of Herschel data from the surveys HOBYS, Evolution of Interstellar Dust, and Hi-Gal to extract compact sources in this region, complemented with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. We obtained a sample of 50 compact sources, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 $M_odot$, densities of 0.1-44 $times$ $10^5$ cm$^{-3}$, and luminosities of 19-12712 $L_odot$. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 $M_odot$, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions.



قيم البحث

اقرأ أيضاً

126 - A. Zavagno , D. Russeil , F. Motte 2010
By means of different physical mechanisms, the expansion of HII regions can promote the formation of new stars of all masses. RCW 120 is a nearby Galactic HII region where triggered star formation occurs. This region is well-studied - there being a w ealth of existing data - and is nearby. However, it is surrounded by dense regions for which far infrared data is essential to obtain an unbiased view of the star formation process and in particular to establish whether very young protostars are present. We attempt to identify all Young Stellar Objects (YSOs), especially those previously undetected at shorter wavelengths, to derive their physical properties and obtain insight into the star formation history in this region. We use Herschel-PACS and -SPIRE images to determine the distribution of YSOs observed in the field. We use a spectral energy distribution fitting tool to derive the YSOs physical properties. Herschel-PACS and -SPIRE images confirm the existence of a young source and allow us to determine its nature as a high-mass (8-10 MSun) Class 0 object (whose emission is dominated by a massive envelope) towards the massive condensation 1 observed at (sub)-millimeter wavelengths. This source was not detected at 24 micron and only barely seen in the MISPGAL 70 micron data. Several other red sources are detected at Herschel wavelengths and coincide with the peaks of the millimeter condensations. SED fitting results for the brightest Herschel sources indicate that, apart from the massive Class 0 that forms in condensation 1, young low mass stars are forming around RCW 120. The YSOs observed on the borders of RCW 120 are younger than its ionizing star, which has an age of about 2.5 Myr.
The expansion of HII regions can trigger the formation of stars. An overdensity of young stellar objects (YSOs) is observed at the edges of HII regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is d ifficult to establish a causal link between HII-region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. We have observed the Galactic HII region RCW120 with herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500$mu$m. We produced temperature and H$_2$ column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions (SEDs) with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. The herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars.
Context. RCW 120 is a well-studied, nearby Galactic HII region with ongoing star formation in its surroundings. Previous work has shown that it displays a bubble morphology at mid-infrared wavelengths and has a massive layer of collected neutral mate rial seen at sub-mm wavelengths. Given the well-defined photo-dissociation region (PDR) boundary and collected layer, it is an excellent laboratory to study the collect and collapse process of triggered star formation. Using Herschel Space Observatory data at 100, 160, 250, 350, and 500 micron, in combination with Spitzer and APEX-LABOCA data, we can for the first time map the entire spectral energy distribution of an HII region at high angular resolution. Aims. We seek a better understanding of RCW120 and its local environment by analysing its dust temperature distribution. Additionally, we wish to understand how the dust emissivity index, beta, is related to the dust temperature. Methods. We determine dust temperatures in selected regions of the RCW 120 field by fitting their spectral energy distribution (SED), derived using aperture photometry. Additionally, we fit the SED extracted from a grid of positions to create a temperature map. Results. We find a gradient in dust temperature, ranging from >30 K in the interior of RCW 120, to ~20K for the material collected in the PDR, to ~10K toward local infrared dark clouds and cold filaments. Our results suggest that RCW 120 is in the process of destroying the PDR delineating its bubble morphology. The leaked radiation from its interior may influence the creation of the next generation of stars. We find support for an anti-correlation between the fitted temperature and beta, in rough agreement with what has been found previously. The extended wavelength coverage of the Herschel data greatly increases the reliability of this result.
The H II region RCW120 is a well-known object, which is often considered as a target to verify theoretical models of gas and dust dynamics in the interstellar medium. However, the exact geometry of RCW120 is still a matter of debate. In this work, we analyse observational data on molecular emission in RCW120 and show that 13CO(2-1) and C18O(2-1) lines are fitted by a 2D model representing a ring-like face-on structure. The changing of the C18O(3-2) line profile from double-peaked to single-peaked from the dense molecular Condensation 1 might be a signature of stalled expansion in this direction. In order to explain a self-absorption dip of the 13CO(2-1) and 13CO(3-2) lines, we suggest that RCW120 is surrounded by a diffuse molecular cloud, and find confirmation of this cloud on a map of interstellar extinction. Optically thick 13CO(2-1) emission and the infrared 8 um PAH band form a neutral envelope of the H II region resembling a ring, while the envelope breaks into separate clumps on images made with optically thin C18O(2-1) line and far-infrared dust emission.
Massive stars and their associated ionized (HII) regions could play a key role in the formation and evolution of filaments that host star formation. However, the properties of filaments that interact with H regions are still poorly known. To investig ate the impact of HII regions on the formation of filaments, we imaged the Galactic HII region RCW 120 and its surroundings where active star formation takes place and where the role of ionization feedback on the star formation process has already been studied. We used the ArTeMiS camera on the APEX telescope and combined the ArTeMiS data at 350 and 450 microns with Herschel-SPIRE/HOBYS. We studied the dense gas distribution around RCW 120 with a resolution of 8 arcsec (0.05 pc at a distance of 1.34 kpc). Our study allows us to trace the median radial intensity profile of the dense shell of RCW 120. This profile is asymmetric, indicating a clear compression from the HII region on the inner part of the shell. The profile is observed to be similarly asymmetric on both lateral sides of the shell, indicating a homogeneous compression over the surface. On the contrary, the profile analysis of a radial filament associated with the shell, but located outside of it, reveals a symmetric profile, suggesting that the compression from the ionized region is limited to the dense shell. The mean intensity profile of the internal part of the shell is well fitted by a Plummer like profile with a deconvolved Gaussian FWHM of 0.09 pc, as observed for filaments in low-mass star-forming regions. This study suggests that compression exerted by HII regions may play a key role in the formation of filaments and may further act on their hosted star formation. ArTeMiS data also suggest that RCW 120 might be a 3D ring, rather than a spherical structure
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا