ترغب بنشر مسار تعليمي؟ اضغط هنا

Game Theoretic Interaction and Decision: A Quantum Analysis

49   0   0.0 ( 0 )
 نشر من قبل Ulrich Faigle
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, Fourier transformation of cooperative games becomes meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context.



قيم البحث

اقرأ أيضاً

The spreading dynamics of an epidemic and the collective behavioral pattern of the population over which it spreads are deeply intertwined and the latter can critically shape the outcome of the former. Motivated by this, we design a parsimonious game -theoretic behavioral--epidemic model, in which an interplay of realistic factors shapes the co-evolution of individual decision-making and epidemics on a network. Although such a co-evolution is deeply intertwined in the real-world, existing models schematize population behavior as instantaneously reactive, thus being unable to capture human behavior in the long term. Our model offers a unified framework to model and predict complex emergent phenomena, including successful collective responses, periodic oscillations, and resurgent epidemic outbreaks. The framework also allows to assess the effectiveness of different policy interventions on ensuring a collective response that successfully eradicates the outbreak. Two case studies, inspired by real-world diseases, are presented to illustrate the potentialities of the proposed model.
The interaction of competing agents is described by classical game theory. It is now well known that this can be extended to the quantum domain, where agents obey the rules of quantum mechanics. This is of emerging interest for exploring quantum foun dations, quantum protocols, quantum auctions, quantum cryptography, and the dynamics of quantum cryptocurrency, for example. In this paper, we investigate two-player games in which a strategy pair can exist as a Nash equilibrium when the games obey the rules of quantum mechanics. Using a generalized Einstein-Podolsky-Rosen (EPR) setting for two-player quantum games, and considering a particular strategy pair, we identify sets of games for which the pair can exist as a Nash equilibrium only when Bells inequality is violated. We thus determine specific games for which the Nash inequality becomes equivalent to Bells inequality for the considered strategy pair.
162 - Ambar Pal , Rene Vidal 2020
Research in adversarial learning follows a cat and mouse game between attackers and defenders where attacks are proposed, they are mitigated by new defenses, and subsequently new attacks are proposed that break earlier defenses, and so on. However, i t has remained unclear as to whether there are conditions under which no better attacks or defenses can be proposed. In this paper, we propose a game-theoretic framework for studying attacks and defenses which exist in equilibrium. Under a locally linear decision boundary model for the underlying binary classifier, we prove that the Fast Gradient Method attack and the Randomized Smoothing defense form a Nash Equilibrium. We then show how this equilibrium defense can be approximated given finitely many samples from a data-generating distribution, and derive a generalization bound for the performance of our approximation.
We consider how an agent should update her uncertainty when it is represented by a set P of probability distributions and the agent observes that a random variable X takes on value x, given that the agent makes decisions using the minimax criterion, perhaps the best-studied and most commonly-used criterion in the literature. We adopt a game-theoretic framework, where the agent plays against a bookie, who chooses some distribution from P. We consider two reasonable games that differ in what the bookie knows when he makes his choice. Anomalies that have been observed before, like time inconsistency, can be understood as arising because different games are being played, against bookies with different information. We characterize the important special cases in which the optimal decision rules according to the minimax criterion amount to either conditioning or simply ignoring the information. Finally, we consider the relationship between conditioning and calibration when uncertainty is described by sets of probabilities.
Low transaction throughput and poor scalability are significant issues in public blockchain consensus protocols such as Bitcoins. Recent research efforts in this direction have proposed shard-based consensus protocols where the key idea is to split t he transactions among multiple committees (or shards), which then process these shards or set of transactions in parallel. Such a parallel processing of disjoint sets of transactions or shards by multiple committees significantly improves the overall scalability and transaction throughout of the system. However, one significant research gap is a lack of understanding of the strategic behavior of rational processors within committees in such shard-based consensus protocols. Such an understanding is critical for designing appropriate incentives that will foster cooperation within committees and prevent free-riding. In this paper, we address this research gap by analyzing the behavior of processors using a game-theoretic model, where each processor aims at maximizing its reward at a minimum cost of participating in the protocol. We first analyze the Nash equilibria in an N-player static game model of the sharding protocol. We show that depending on the reward sharing approach employed, processors can potentially increase their payoff by unilaterally behaving in a defective fashion, thus resulting in a social dilemma. In order to overcome this social dilemma, we propose a novel incentive-compatible reward sharing mechanism to promote cooperation among processors. Our numerical results show that achieving a majority of cooperating processors (required to ensure a healthy state of the blockchain network) is easier to achieve with the proposed incentive-compatible reward sharing mechanism than with other reward sharing mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا