ﻻ يوجد ملخص باللغة العربية
We consider how an agent should update her uncertainty when it is represented by a set P of probability distributions and the agent observes that a random variable X takes on value x, given that the agent makes decisions using the minimax criterion, perhaps the best-studied and most commonly-used criterion in the literature. We adopt a game-theoretic framework, where the agent plays against a bookie, who chooses some distribution from P. We consider two reasonable games that differ in what the bookie knows when he makes his choice. Anomalies that have been observed before, like time inconsistency, can be understood as arising because different games are being played, against bookies with different information. We characterize the important special cases in which the optimal decision rules according to the minimax criterion amount to either conditioning or simply ignoring the information. Finally, we consider the relationship between conditioning and calibration when uncertainty is described by sets of probabilities.
As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a ``naive space, which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A crit
To achieve general intelligence, agents must learn how to interact with others in a shared environment: this is the challenge of multiagent reinforcement learning (MARL). The simplest form is independent reinforcement learning (InRL), where each agen
Low transaction throughput and poor scalability are significant issues in public blockchain consensus protocols such as Bitcoins. Recent research efforts in this direction have proposed shard-based consensus protocols where the key idea is to split t
In timeline-based planning, domains are described as sets of independent, but interacting, components, whose behaviour over time (the set of timelines) is governed by a set of temporal constraints. A distinguishing feature of timeline-based planning
An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and