ﻻ يوجد ملخص باللغة العربية
Dark matter candidates such as weakly-interacting massive particles are predicted to annihilate or decay into Standard Model particles leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even anti-nuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic ray measurements could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today - eighty years after the first observational indications. Today, it is widely
Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above $sim1$ GeV. However, due to the lacking sensitivity of current experiments at MeV-G
Galactic charged cosmic rays (notably electrons, positrons, antiprotons and light antinuclei) are powerful probes of dark matter annihilation or decay, in particular for candidates heavier than a few MeV or tiny evaporating primordial black holes. Re
The self-annihilation of dark matter particles with mass in the MeV range can produce gamma rays via prompt or secondary radiation. The annihilation rate for such light dark matter particles is however tightly constrained by cosmic microwave backgrou
The annihilations of WIMPs produce high energy gamma-rays in the final state. These high energy gamma-rays may be detected by IACTs such as the H.E.S.S. array of Imaging Atmospheric Cherenkov telescopes. Besides the popular targets such as the Galact