ﻻ يوجد ملخص باللغة العربية
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today - eighty years after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles - that are weakly interacting and massive (WIMPs for Weakly Interacting Massive Particles). As important as dark matter is in our understanding of cosmology, the detection of these particles has so far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of gamma-ray photons or cosmic rays. Instruments such as the Fermi-LAT, H.E.S.S., MAGIC and VERITAS, combined with the future Cherenkov Telescope Array (CTA) will provide important and complementary constraints to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be re-thought. In this sense we are on the Threshold of Discovery. In this article, I will give a general overview over the current status and the future expectations for indirect searches for dark matter (WIMP) particles.
Dark matter candidates such as weakly-interacting massive particles are predicted to annihilate or decay into Standard Model particles leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even anti-nuclei. Indire
We discuss the prospects for indirect detection of dark matter (DM) with the Cherenkov Telescope Array (CTA), a future ground-based gamma-ray observatory that will be sensitive to gamma rays in the energy range from a few tens of GeV to 100 TeV. We c
The self-annihilation of dark matter particles with mass in the MeV range can produce gamma rays via prompt or secondary radiation. The annihilation rate for such light dark matter particles is however tightly constrained by cosmic microwave backgrou
The astronomical dark matter could be made of weakly interacting and massive particles. If so, these species would be abundant inside the Milky Way, where they would continuously annihilate and produce cosmic rays. Those annihilation products are pot
The astrophysics community is considering plans for a variety of gamma-ray telescopes (including ACT and GRIPS) in the energy range 1--100 MeV, which can fill in the so-called MeV gap in current sensitivity. We investigate the utility of such detecto