ﻻ يوجد ملخص باللغة العربية
Robotics systems are complex, often consisted of basic services including SLAM for localization and mapping, Convolution Neural Networks for scene understanding, and Speech Recognition for user interaction, etc. Meanwhile, robots are mobile and usually have tight energy constraints, integrating these services onto an embedded platform with around 10 W of power consumption is critical to the proliferation of mobile robots. In this paper, we present a case study on integrating real-time localization, vision, and speech recognition services on a mobile SoC, Nvidia Jetson TX1, within about 10 W of power envelope. In addition, we explore whether offloading some of the services to cloud platform can lead to further energy efficiency while meeting the real-time requirements
We present an approach for safe and object-independent human-to-robot handovers using real time robotic vision and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm and by using a single g
This paper describes a novel approach in human robot interaction driven by ergonomics. With a clear focus on optimising ergonomics, the approach proposed here continuously observes a human users posture and by invoking appropriate cooperative robot m
The core problem of visual multi-robot simultaneous localization and mapping (MR-SLAM) is how to efficiently and accurately perform multi-robot global localization (MR-GL). The difficulties are two-fold. The first is the difficulty of global localiza
Localization, or position fixing, is an important problem in robotics research. In this paper, we propose a novel approach for long-term localization in a changing environment using 3D LiDAR. We first create the map of a real environment using GPS an
Researchers and robotic development groups have recently started paying special attention to autonomous mobile robot navigation in indoor environments using vision sensors. The required data is provided for robot navigation and object detection using