ﻻ يوجد ملخص باللغة العربية
Motivated by the modeling of the temporal structure of the velocity field in a highly turbulent flow, we propose and study a linear stochastic differential equation that involves the ingredients of a Ornstein-Uhlenbeck process, supplemented by a fractional Gaussian noise, of parameter $H$, regularized over a (small) time scale $epsilon>0$. A peculiar correlation between these two plays a key role in the establishment of the statistical properties of its solution. We show that this solution reaches a stationary regime, which marginals, including variance and increment variance, remain bounded when $epsilon to 0$. In particular, in this limit, for any $Hin ]0,1[$, we show that the increment variance behaves at small scales as the one of a fractional Brownian motion of same parameter $H$. From the theoretical side, this approach appears especially well suited to deal with the (very) rough case $H<1/2$, including the boundary value $H=0$, and to design simple and efficient numerical simulations.
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as
Tempered fractional Brownian motion is revisited from the viewpoint of reduced fractional Ornstein-Uhlenbeck process. Many of the basic properties of the tempered fractional Brownian motion can be shown to be direct consequences or modifications of t
In this paper, we study the Kelly criterion in the continuous time framework building on the work of E.O. Thorp and others. The existence of an optimal strategy is proven in a general setting and the corresponding optimal wealth process is found. A s
The paper is concerned with the properties of solutions to linear evolution equation perturbed by cylindrical Levy processes. It turns out that solutions, under rather weak requirements, do not have c`adl`ag modification. Some natural open questions are also stated.
This paper addresses the problem of estimating drift parameter of the Ornstein - Uhlenbeck type process, driven by the sum of independent standard and fractional Brownian motions. The maximum likelihood estimator is shown to be consistent and asympto