ﻻ يوجد ملخص باللغة العربية
In this paper, we study the Kelly criterion in the continuous time framework building on the work of E.O. Thorp and others. The existence of an optimal strategy is proven in a general setting and the corresponding optimal wealth process is found. A simple formula is provided for calculating the optimal portfolio for a set of price processes satisfying some simple conditions. Properties of the optimal investment strategy for assets governed by multiple Ornstein-Uhlenbeck processes are studied. The paper ends with a short discussion of the implications of these ideas for financial markets.
We develop a general framework for applying the Kelly criterion to stock markets. By supplying an arbitrary probability distribution modeling the future price movement of a set of stocks, the Kelly fraction for investing each stock can be calculated
The influence of Commodity Trading Advisors (CTA) on the price process is explored with the help of a simple model. CTA managers are taken to be Kelly optimisers, which invest a fixed proportion of their assets in the risky asset and the remainder in
The Ornstein-Uhlenbeck process can be seen as a paradigm of a finite-variance and statistically stationary rough random walk. Furthermore, it is defined as the unique solution of a Markovian stochastic dynamics and shares the same local regularity as
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitativ
The paper is concerned with the properties of solutions to linear evolution equation perturbed by cylindrical Levy processes. It turns out that solutions, under rather weak requirements, do not have c`adl`ag modification. Some natural open questions are also stated.