ﻻ يوجد ملخص باللغة العربية
We present an example of a quadratic algebra given by three generators and three relations, which is automaton (the set of normal words forms a regular language) and such that its ideal of relations does not possess a finite Grobner basis with respect to any choice of generators and any choice of a well-ordering of monomials compatible with multiplication. This answers a question of Ufnarovski. Another result is a simple example (4 generators and 7 relations) of a quadratic algebra of intermediate growth.
We give a complete classification of quadratic algebras A, with Hilbert series $H_A=(1-t)^{-3}$, which is the Hilbert series of commutative polynomials on 3 variables. Koszul algebras as well as algebras with quadratic Grobner basis among them are id
We describe the Gerstenhaber algebra structure on the Hochschild cohomology HH*$(A)$ when $A$ is a quadratic string algebra. First we compute the Hochschild cohomology groups using Barzdells resolution and we describe generators of these groups. Then
Given a finite non-degenerate set-theoretic solution $(X,r)$ of the Yang-Baxter equation and a field $K$, the structure $K$-algebra of $(X,r)$ is $A=A(K,X,r)=Klangle Xmid xy=uv mbox{ whenever }r(x,y)=(u,v)rangle$. Note that $A=oplus_{ngeq 0} A_n$ is
Let $F$ be a field of characteristic zero and $W$ be an associative affine $F$-algebra satisfying a polynomial identity (PI). The codimension sequence associated to $W$, $c_n(W)$, is known to be of the form $Theta (c n^t d^n)$, where $d$ is the well
We study possible connections between Rota-Baxter operators of non-zero weight and non-skew-symmetric solutions of the classical Yang-Baxter equation on finite-dimensional quadratic Lie algebras. The particular attention is made to the case when for