ترغب بنشر مسار تعليمي؟ اضغط هنا

The Polynomial Part of the Codimension Growth of Affine PI Algebras

117   0   0.0 ( 0 )
 نشر من قبل Yakov Karasik
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $F$ be a field of characteristic zero and $W$ be an associative affine $F$-algebra satisfying a polynomial identity (PI). The codimension sequence associated to $W$, $c_n(W)$, is known to be of the form $Theta (c n^t d^n)$, where $d$ is the well known (PI) exponent of $W$. In this paper we establish an algebraic interpretation of the polynomial part (the constant $t$) by means of Kemers theory. In particular, we show that in case $W$ is a basic algebra, then $t = frac{d-q}{2} + s$, where $q$ is the number of simple component in $W/J(W)$ and $s+1$ is the nilpotency degree of $J(W)$. Thus proving a conjecture of Giambruno.



قيم البحث

اقرأ أيضاً

We present a proof of Kemers representability theorem for affine PI algebras over a field of characteristic zero.
Let $A$ and $B$ be finite-dimensional simple algebras with arbitrary signature over an algebraically closed field. Suppose $A$ and $B$ are graded by a semigroup $S$ so that the graded identitical relations of $A$ are the same as those of $B$. Then $A$ is isomorphic to $B$ as an $S$-graded algebra.
Let G be a finite group and A a finite dimensional G-graded algebra over a field of characteristic zero. When A is simple as a G-graded algebra, by mean of Regev central polynomials we construct multialternating graded polynomials of arbitrarily larg e degree non vanishing on A. As a consequence we compute the exponential rate of growth of the sequence of graded codimensions of an arbitrary G-graded algebra satisfying an ordinary polynomial identity. In particular we show it is an integer. The result was proviously known in case G is abelian.
86 - Quanshui Wu , Ruipeng Zhu 2021
We provide a description of the tilting complexes of a PI algebra whose spectrum is canonical homeomorphic to the one of its center.
100 - X.-F. Mao , X.-D. Gao , Y.-N. Yang 2017
In this paper, we introduce and study differential graded (DG for short) polynomial algebras. In brief, a DG polynomial algebra $mathcal{A}$ is a connected cochain DG algebra such that its underlying graded algebra $mathcal{A}^{#}$ is a polynomial al gebra $mathbb{k}[x_1,x_2,cdots, x_n]$ with $|x_i|=1$, for any $iin {1,2,cdots, n}$. We describe all possible differential structures on DG polynomial algebras; compute their DG automorphism groups; study their isomorphism problems; and show that they are all homologically smooth and Gorestein DG algebras. Furthermore, it is proved that the DG polynomial algebra $mathcal{A}$ is a Calabi-Yau DG algebra when its differential $partial_{mathcal{A}} eq 0$ and the trivial DG polynomial algebra $(mathcal{A}, 0)$ is Calabi-Yau if and only if $n$ is an odd integer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا