ﻻ يوجد ملخص باللغة العربية
The solar transition region satisfies the conditions for presence of non-Maxwellian electron energy distributions with high-energy tails at energies corresponding to the ionization potentials of many ions emitting in the EUV and UV portions of the spectrum. We calculate the synthetic Si IV, O IV, and S IV spectra in the far ultra-violet (FUV) channel of the Interface Region Imaging Spectrograph (IRIS). Ionization, recombination, and excitation rates are obtained by integration of the cross-sections or their approximations over the model electron distributions considering particle propagation from the hotter corona. The ionization rates are significantly affected by the presence of high-energy tails. This leads to the peaks of the relative abundance of individual ions to be broadened with pronounced low-temperature shoulders. As a result, the contribution functions of individual lines observable by IRIS also exhibit low-temperature shoulders, or their peaks are shifted to temperatures an order of magnitude lower than for the Maxwellian distribution. The integrated emergent spectra can show enhancements of Si IV compared toO IV by more than a factor of two. The high-energy particles can have significant impact on the emergent spectra and their presence needs to be considered even in situations without strong local acceleration.
The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically
NASAs Interface Region Imaging Spectrograph (IRIS) provides high resolution observations of the solar atmosphere through UV spectroscopy and imaging. Since the launch of IRIS in June 2013, we have conducted systematic observation campaigns in coordin
We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic re
The Interface Region Imaging Spectrograph (IRIS) has been obtaining near- and far-ultraviolet images and spectra of the solar atmosphere since July 2013. The unique combination of near and far-ultraviolet spectra and images at subarcsecond resolution
Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of $>10^{12}$ cm$^{-3}$ at transition region temperatures of 0.1 MK, based on large intensity ratios of