ترغب بنشر مسار تعليمي؟ اضغط هنا

A Si IV/O IV electron density diagnostic for the analysis of IRIS solar spectra

63   0   0.0 ( 0 )
 نشر من قبل Peter Young
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Solar spectra of ultraviolet bursts and flare ribbons from the Interface Region Imaging Spectrograph (IRIS) have suggested high electron densities of $>10^{12}$ cm$^{-3}$ at transition region temperatures of 0.1 MK, based on large intensity ratios of Si IV $lambda$1402.77 to O IV $lambda$1401.16. In this work a rare observation of the weak O IV $lambda$1343.51 line is reported from an X-class flare that peaked at 21:41 UT on 2014 October 24. This line is used to develop a theoretical prediction of the Si IV $lambda$1402.77 to O IV $lambda$1401.16 ratio as a function of density that is recommended to be used in the high density regime. The method makes use of new pressure-dependent ionization fractions that take account of the suppression of dielectronic recombination at high densities. It is applied to two sequences of flare kernel observations from the October 24 flare. The first shows densities that vary between $3times 10^{12}$ to $3 times 10^{13}$ cm$^{-3}$ over a seven minute period, while the second location shows stable density values of around $2times 10^{12}$ cm$^{-3}$ over a three minute period.



قيم البحث

اقرأ أيضاً

201 - Ke Yu , Y. Li , M. D. Ding 2020
We present temporal variations of the Si IV line profiles at the flare ribbons in three solar flares observed by the Interface Region Imaging Spectrograph (IRIS). In the M1.1 flare on 2014 September 6 and the X1.6 flare on 2014 September 10, the Si I V line profiles evolve from wholly redshifted to red-wing enhanced with the flare development. However, in the B1.8 flare on 2016 December 2, the Si IV line profiles are wholly redshifted throughout the flare evolution. We fit the wholly redshifted line profiles with a single Gaussian function but the red-asymmetric ones with a double Gaussian function to deduce the corresponding Doppler velocities. In addition, we find that hard X-ray emission above 25 keV shows up in the two large flares, implying a nonthermal electron beam heating. In the microflare, there only appears weak hard X-ray emission up to 12 keV, indicative of a thermal heating mostly. We interpret the redshifts or red asymmetries of the Si IV line at the ribbons in the three flares as spectral manifestations of chromospheric condensation. We propose that whether the line appears to be wholly redshifted or red-asymmetric depends on the heating mechanisms and also on the propagation of the condensation.
Motivated by previous studies of QSO spectra that reported a variation of the fine structure constant alpha, a search for C IV and Si IV doublets was conducted in the absorption spectrum toward QSO 1101-264, obtained by VLT-UVES during the Science Ve rification. Seven C IV and two Si IV systems were identified and accurate measurements of wavelengths over the redshift range 1.1862 < z < 1.8377 were performed. After a careful selection of pairs of lines, the Alkali Doublet method with a derived analitical expression for the error analysis was applied to compute the alpha variation. The result according in magnitud order with previous doublets measurements, corresponds to one Si IV system: Delta alpha/alpha = (- 3.09 +/- 8.46) x 10^(-5).
The removal of magnetic flux from the quiet-sun photosphere is important for maintaining the statistical steady-state of the magnetic field there, for determining the magnetic flux budget of the Sun, and for estimating the rate of energy injected int o the upper solar atmosphere. Magnetic feature death is a measurable proxy for the removal of detectable flux. We used the SWAMIS feature tracking code to understand how nearly 20000 detected magnetic features die in an hour-long sequence of Hinode/SOT/NFI magnetograms of a region of quiet Sun. Of the feature deaths that remove visible magnetic flux from the photosphere, the vast majority do so by a process that merely disperses the previously-detected flux so that it is too small and too weak to be detected. The behavior of the ensemble average of these dispersals is not consistent with a model of simple planar diffusion, suggesting that the dispersal is constrained by the evolving photospheric velocity field. We introduce the concept of the partial lifetime of magnetic features, and show that the partial lifetime due to Cancellation of magnetic flux, 22 h, is 3 times slower than previous measurements of the flux turnover time. This indicates that prior feature-based estimates of the flux replacement time may be too short, in contrast with the tendency for this quantity to decrease as resolution and instrumentation have improved. This suggests that dispersal of flux to smaller scales is more important for the replacement of magnetic fields in the quiet Sun than observed bipolar cancellation. We conclude that processes on spatial scales smaller than those visible to Hinode dominate the processes of flux emergence and cancellation, and therefore also the quantity of magnetic flux that threads the photosphere.
The Interface Region Imaging Spectrograph (IRIS) routinely observes the Si IV resonance lines. When analyzing observations of these lines it has typically been assumed they form under optically thin conditions. This is likely valid for the quiescent Sun, but this assumption has also been applied to the more extreme flaring scenario. We used 36 electron beam driven radiation hydrodynamic solar flare simulations, computed using the RADYN code, to probe the validity of this assumption. Using these simulated atmospheres we solved the radiation transfer equations to obtain the non-LTE, non-equilibrium populations, line profiles, and opacities for a model Silicon atom, including charge exchange processes. This was achieved using the `minority species version of RADYN. The inclusion of charge exchange resulted in a substantial fraction of Si IV at cooler temperatures than those predicted by ionisation equilibrium. All simulations with an injected energy flux $F>5times10^{10}$ erg cm$^{-2}$ s$^{-1}$ resulted in optical depth effects on the Si IV emission, with differences in both intensity and line shape compared to the optically thin calculation. Weaker flares (down to $Fapprox5times10^{9}$ erg cm$^{-2}$ s$^{-1}$) also resulted in Si IV emission forming under optically thick conditions, depending on the other beam parameters. When opacity was significant, the atmospheres generally had column masses in excess of $5times10^{-6}$ g cm$^{-2}$ over the temperature range $40$ to $100$ kK, and the Si IV formation temperatures were between $30$ and $60$ kK. We urge caution when analyzing Si IV flare observations, or when computing synthetic emission without performing a full radiation transfer calculation.
Aims: We generate theoretical ultraviolet and extreme-ultraviolet emission line ratios for O IV and show their strong versatility as electron temperature and density diagnostics for astrophysical plasmas. Methods: Recent fully relativistic calculatio ns of radiative rates and electron impact excitation cross sections for O IV, supplemented with earlier data for A-values and proton excitation rates, are used to derive theoretical O IV line intensity ratios for a wide range of electron temperatures and densities. Results: Diagnostic line ratios involving ultraviolet or extreme-ultraviolet transitions in O IV are presented, that are applicable to a wide variety of astrophysical plasmas ranging from low density gaseous nebulae to the densest solar and stellar flares. Comparisons with observational data, where available, show good agreement between theory and experiment, providing support for the accuracy of the diagnostics. However, diagnostics are also presented involving lines that are blended in existing astronomical spectra, in the hope this might encourage further observational studies at higher spectral resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا