ﻻ يوجد ملخص باللغة العربية
The method based on fast Fourier transforms proposed by G. Roman-Perez and J. M. Soler [Phys. Rev. Lett. 103, 096102 (2009)], which allows for a computationally fast implementation of the nonlocal van der Waals (vdW) functionals, has significantly contributed to making the vdW functionals popular in solid-state physics. However, the Roman-Perez-Soler method relies on a plane-wave expansion of the electron density; therefore it can not be applied readily to all-electron densities for which an unaffordable number of plane waves would be required for an accurate expansion. In this work, we present the results for the lattice constant and binding energy of solids that were obtained by applying a smoothing procedure to the all-electron density calculated with the linearized augmented plane-wave method. The smoothing procedure has the advantages of being very simple to implement, basis-set independent, and allowing the calculation of the potential. It is also shown that the results agree very well with those from the literature that were obtained with the projector augmented wave method.
The nonlocal van der Waals (NL-vdW) functionals [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] are being applied more and more frequently in solid-state physics, since they have shown to be much more reliable than the traditional semilocal functio
We present the idea and illustrate potential benefits of having a tool chain of closely related regular, unscreened and screened hybrid exchange-correlation (XC) functionals, all within the consistent formulation of the van der Waals density function
The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energ
We report structural, physical properties and electronic structure of van der Waals (vdW) crystal VI3. Detailed analysis reveals that VI3 exhibits a structural transition from monoclinic C2/m to rhombohedral R-3 at Ts ~ 79 K, similar to CrX3 (X = Cl,
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t