ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of van der Waals density functionals

127   0   0.0 ( 0 )
 نشر من قبل Per Hyldgaard
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.



قيم البحث

اقرأ أيضاً

Two hybrid van der Waals density functionals (vdW-DFs) are constructed using 25%, Fock exchange with i) the consistent-exchange vdW-DF-cx functional and ii) with the vdW-DF2 functional. The ability to describe covalent and non-covalent binding proper ties of molecules are assessed. For properties related to covalent binding, atomization energies (G2-1 set), molecular reaction energies (G2RC set), as well as ionization energies (G21IP set) are benchmarked against experimental reference values. We find that hybrid-vdW-DF-cx yields results that are rather similar to those of the standard non-empirical hybrid PBE0 [JCP 110, 6158 (1996)]. Hybrid vdW-DF2 follows somewhat different trends, showing on average significantly larger deviations from the reference energies, with a MAD of 14.5 kcal/mol for the G2-1 set. Non-covalent binding properties of molecules are assessed using the S22 benchmark set of non-covalently bonded dimers and the X40 set of dimers of small halogenated molecules, using wavefunction-based quantum chemistry results for references. For the S22 set, hybrid-vdW-DF-cx performs better than standard vdW-DF-cx for the mostly hydrogen-bonded systems. Hybrid-vdW-DF2 offers a slight improvement over standard vdW-DF2. Similar trends are found for the X40 set, with hybrid-vdW-DF-cx performing particularly well for binding involving the strongly polar hydrogen halides, but poorly for systems with tiny binding energies. Our study of the X40 set reveals both the potential of mixing Fock exchange with vdW-DF, but also highlights shortcomings of the hybrids constructed here. The solid performance of hybrid-vdW-DF-cx for covalent-bonded systems, as well as the strengths and issues uncovered for non-covalently bonded systems, makes this study a good starting point for developing even more precise hybrid vdW-DFs.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Van der Waals (vdW) solids, as a new type of artificial materials that consist of alternating layers bonded by weak interactions, have shed light on fascinating optoelectronic device concepts. As a result, a large variety of vdW devices have been eng ineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids has proven as a scalable and swift way, highlighted by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Here, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids behave dramatically different in light emission. Our studies demonstrate that h-BN monolayer is a great complement to organic perovskite for preserving its original optical properties. As a result, organic/h-BN vdW solid arrays are patterned for red light emitting. This work paves the way for designing unprecedented vdW solids with great potential for a wide spectrum of applications in optoelectronics.
Potassium intercalation in graphite is investigated by first-principles theory. The bonding in the potassium-graphite compound is reasonably well accounted for by traditional semilocal density functional theory (DFT) calculations. However, to investi gate the intercalate formation energy from pure potassium atoms and graphite requires use of a description of the graphite interlayer binding and thus a consistent account of the nonlocal dispersive interactions. This is included seamlessly with ordinary DFT by a van der Waals density functional (vdW-DF) approach [Phys. Rev. Lett. 92, 246401 (2004)]. The use of the vdW-DF is found to stabilize the graphite crystal, with crystal parameters in fair agreement with experiments. For graphite and potassium-intercalated graphite structural parameters such as binding separation, layer binding energy, formation energy, and bulk modulus are reported. Also the adsorption and sub-surface potassium absorption energies are reported. The vdW-DF description, compared with the traditional semilocal approach, is found to weakly soften the elastic response.
Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, as recently demonstrated in systems of superconducting qubits. However, these qubits have large footprints due to their large capacitor electrodes needed to suppress losses by avoiding dielectric materials. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of the van der Waals (vdW) materials to reduce the qubit area by a factor of $>1000$ while preserving the required capacitance without increasing substantial loss. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide (NbSe$_2$) and insulating hexagonal-boron nitride (hBN). We measure a vdW transmon $T_1$ relaxation time of 1.06 $mu$s, which demonstrates a path to achieve high-qubit-density quantum processors with long coherence times, and illustrates the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا