ﻻ يوجد ملخص باللغة العربية
We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method.
We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl
Regularization of ill-posed linear inverse problems via $ell_1$ penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an $ell_1$ penalized functional is via an iterative so
An approximate diagonalization method is proposed that combines exact diagonalization and perturbation expansion to calculate low energy eigenvalues and eigenfunctions of a Hamiltonian. The method involves deriving an effective Hamiltonian for each e
This paper introduces a framework for speeding up Bayesian inference conducted in presence of large datasets. We design a Markov chain whose transition kernel uses an (unknown) fraction of (fixed size) of the available data that is randomly refreshed
In the current work we present two generalizations of the Parallel Tempering algorithm, inspired by the so-called continuous-time Infinite Swapping algorithm. Such a method, found its origins in the molecular dynamics community, and can be understood