ﻻ يوجد ملخص باللغة العربية
We show that a tetragonal lattice of weakly interacting cavities with uniaxial electromagnetic response is the photonic counterpart of topological crystalline insulators, a new topological phase of atomic band insulators. Namely, the frequency band structure stemming from the interaction of resonant modes of the individual cavities exhibits an omnidirectional band gap within which gapless surface states emerge for finite slabs of the lattice. Due to the equivalence of a topological crystalline insulator with its photonic-crystal analog, the frequency band structure of the latter can be characterized by a $Z_{2}$ topological invariant. Such a topological photonic crystal can be realized in the microwave regime as a three-dimensional lattice of dielectric particles embedded within a continuous network of thin metallic wires.
We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t
We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The
We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic $theta$-angle $theta_{em} = frac{pi}{3}$ and a discrete $mathbb{Z}_3$ gauge field. They are the proper generalizations of the T-pfaffian state