ﻻ يوجد ملخص باللغة العربية
In the study of high-mass star formation, hot cores are empirically defined stages where chemically rich emission is detected toward a massive YSO. It is unknown whether the physical origin of this emission is a disk, inner envelope, or outflow cavity wall and whether the hot core stage is common to all massive stars. We investigate the chemical make up of several hot molecular cores to determine physical and chemical structure. We use high spectral and spatial resolution Cycle 0 ALMA observations to determine how this stage fits into the formation sequence of a high mass star. We observed the G35.20-0.74N and G35.03+0.35 hot cores at 350 GHz. We analyzed spectra and maps from four continuum peaks (A, B1, B2 and B3) in G35.20, separated by 1000-2000 AU, and one continuum peak in G35.03. We made all possible line identifications across 8 GHz of spectral windows of molecular emission lines and determined column densities and temperatures for as many as 35 species assuming local thermodynamic equilibrium. In comparing the spectra of the four peaks, we find each has a distinct chemical composition expressed in over 400 different transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic and inorganic species but few nitrogen-bearing species whereas A and B3 are strong sources of O, S, and N-bearing species (especially those with the CN-bond). CH$_2$DCN is clearly detected in A and B3 with D/H ratios of 8 and 13$%$, respectively, but is much weaker at B1 and undetected at B2. No deuterated species are detected in G35.03, but similar molecular abundances to G35.20 were found in other species. We also find co-spatial emission of HNCO and NH$_2$CHO in both sources indicating a strong chemical link between the two species. The chemical segregation between N-bearing organic species and others in G35.20 suggests the presence of multiple protostars, surrounded by a disk or torus.
We present high angular resolution observations (0.5x0.3) carried out with the Submillimeter Array (SMA) toward the AFGL2591 high-mass star forming region. Our SMA images reveal a clear chemical segregation within the AFGL2591 VLA 3 hot core, where d
Observations of pre-/proto-stellar cores in young star-forming regions show them to be mass segregated, i.e. the most massive cores are centrally concentrated, whereas pre-main sequence stars in the same star-forming regions (and older regions) are n
The mechanism for producing polarized emission from protostellar disks at (sub)millimeter wavelengths is currently uncertain. Classically, polarization is expected from non-spherical grains aligned with the magnetic field. Recently, two alternatives
We present ALMA observations of organic molecules towards five low-mass Class 0/I protostellar disk candidates in the Serpens cluster. Three sources (Ser-emb 1, Ser-emb 8, and Ser-emb 17) present emission of CH3OH as well as CH3OCH3, CH3OCHO, and CH2
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimet