ترغب بنشر مسار تعليمي؟ اضغط هنا

Resolved images of the protoplanetary disk around HD 100546 with ALMA

146   0   0.0 ( 0 )
 نشر من قبل Jaime Pineda E
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jaime E. Pineda




اسأل ChatGPT حول البحث

The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.



قيم البحث

اقرأ أيضاً

In this paper we present new ALMA observations towards the proto-planet hosting transitional disc of Herbig Ae/Be star HD 100546. This includes resolved 1.3 mm continuum, $^{13}$CO and the first detection of C$^{18}$O in this disc, which displays azi muthal asymmetry in regions spatially coincident with structures previously identified in HST images related to spiral arms. The lower limit on the mass of the dust disc is calculated to be 9.6x10$^{-4}$M$_odot$. A firm lower-limit on the total gas mass calculated from optically thin, mid-plane tracing C$^{18}$O (2-1) emission is 0.018M$_odot$ assuming ISM abundances. These mass estimates provide an estimate of gas-to-dust ratio in the disc of 19, the ratio will increase if C$^{18}$O is relatively under-abundant in the disc compared to CO and H2. Through deprojection and azimuthal averaging of the image plane we detect 1.3 mm continuum emission out to 290+/-10 au,$^{13}$CO to 390+/-10 au and C$^{18}$O to 300+/-10au. We measure a radially increasing millimetre spectral index between wavelengths of 867$mu$m and 1.3 mm, which shows that grain sizes increase towards the star, with solid particles growing to cm scales in the inner disc.
207 - Catherine Walsh 2014
HD 100546 is a well-studied Herbig Be star-disk system that likely hosts a close-in companion with compelling observational evidence for an embedded protoplanet at 68 AU. We present ALMA observations of the HD 100546 disk which resolve the gas and du st structure at (sub)mm wavelengths. The CO emission (at 345.795 GHz) originates from an extensive molecular disk (390+/-20 AU in radius) whereas the continuum emission is more compact (230+/-20 AU in radius) suggesting radial drift of the mm-sized grains. The CO emission is similar in extent to scattered light images indicating well-mixed gas and um-sized grains in the disk atmosphere. Assuming azimuthal symmetry, a single-component power-law model cannot reproduce the continuum visibilities. The visibilities and images are better reproduced by a double-component model: a compact ring with a width of 21 AU centered at 26 AU and an outer ring with a width of 75+/-3 AU centered at 190+/-3 AU. The influence of a companion and protoplanet on the dust evolution is investigated. The companion at 10 AU facilitates the accumulation of mm-sized grains within a compact ring, ~ 20 - 30 AU, by ~ 10 Myr. The injection of a protoplanet at 1 Myr hastens the ring formation (~ 1.2 Myr) and also triggers the development of an outer ring (~ 100 - 200 AU). These observations provide additional evidence for the presence of a close-in companion and hint at dynamical clearing by a protoplanet in the outer disk.
62 - E. Sissa , R. Gratton , A. Garufi 2018
The nearby Herbig Be star HD100546 is known to be a laboratory for the study of protoplanets and their relation with the circumstellar disk that is carved by at least 2 gaps. We observed the HD100546 environment with high contrast imaging exploiting several different observing modes of SPHERE, including datasets with/without coronagraphs, dual band imaging, integral field spectroscopy and polarimetry. The picture emerging from these different data sets is complex. Flux-conservative algorithms images clearly show the disk up to 200au. More aggressive algorithms reveal several rings and warped arms overlapping the main disk. The bright parts of this ring lie at considerable height over the disk mid-plane at about 30au. Our images demonstrate that the brightest wings close to the star in the near side of the disk are a unique structure, corresponding to the outer edge of the intermediate disk at ~40au. Modeling of the scattered light from the disk with a geometrical algorithm reveals that a moderately thin structure can well reproduce the light distribution in the flux-conservative images. We suggest that the gap between 44 and 113 au span between the 1:2 and 3:2 resonance orbits of a massive body located at ~70au that might coincide with the candidate planet HD100546b detected with previous thermal IR observations. In this picture, the two wings can be the near side of a ring formed by disk material brought out of the disk at the 1:2 resonance with the same massive object. While we find no clear evidence confirming detection of the planet candidate HD100546c in our data, we find a diffuse emission close to the expected position of HD100546b. This source can be described as an extremely reddened substellar object surrounded by a dust cloud or its circumplanetary disk. Its astrometry is broadly consistent with a circular orbital motion on the disk plane.
Scattered light imaging has revealed nearly a dozen circumstellar disks around young Herbig Ae/Be stars$-$enabling studies of structures in the upper disk layers as potential signs of on-going planet formation. We present the first images of the disk around the variable Herbig Ae star PDS 201 (V* V351 Ori), and an analysis of the images and spectral energy distribution through 3D Monte-Carlo radiative transfer simulations and forward modelling. The disk is detected in three datasets with LBTI/LMIRCam at the LBT, including direct observations in the $Ks$ and $L$ filters, and an $L$ observation with the 360$^circ$ vector apodizing phase plate coronagraph. The scattered light disk extends to a very large radius of $sim$250 au, which places it among the largest of such disks. Exterior to the disk, we establish detection limits on substellar companions down to $sim$5 M$_{Jup}$ at $gtrsim$1.5 ($gtrsim$500 au), assuming the Baraffe et al. (2015) models. The images show a radial gap extending to $sim$0.4 ($sim$140 au at a distance of 340 pc) that is also evident in the spectral energy distribution. The large gap is a possible signpost of multiple high-mass giant planets at orbital distances ($sim$60-100 au) that are unusually massive and widely-separated compared to those of planet populations previously inferred from protoplanetary disk substructures.
77 - P.N. Diep , D.T. Hoai , N.B. Ngoc 2019
HD 163296 is one of the few protoplanetary discs displaying rings in the dust component. The present work uses ALMA observations of the 0.9 mm continuum emission having significantly better spatial resolution (~8 au) than previously available, provid ing new insight on the morphology of the dust disc and its double ring structure. The disc is shown to be thin and its position angle and inclination with respect to the sky plane are accurately measured as are the locations and shapes that characterize the observed ring/gap structure. Significant modulation of the intensity of the outer ring emission have been revealed and discussed. In addition, earlier ALMA observations of the emission of three molecular lines, CO(2-1), C18O(2-1), and DCO+(3-2), having a resolution of ~70 au, are used to demonstrate the Keplerian motion of the gas, found consistent with a central mass of 2.3 solar masses. An upper limit of ~9% of the rotation velocity is placed on the in-fall velocity. The beam size is shown to give the dominant contribution to the line widths, accounting for both their absolute values and their dependence on the distance to the central star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا