ﻻ يوجد ملخص باللغة العربية
Analysis of the statistical properties of exoplanets, together with those of their host stars, are providing a unique view into the process of planet formation and evolution. In this paper we explore the properties of the mass distribution of giant planet companions to solar-type stars, in a quest for clues about their formation process. With this goal in mind we studied, with the help of standard statistical tests, the mass distribution of giant planets using data from the exoplanet.eu catalog and the SWEET-Cat database of stellar parameters for stars with planets. We show that the mass distribution of giant planet companions is likely to present more than one population with a change in regime around 4,M$_{Jup}$. Above this value host stars tend to be more metal poor and more massive and have [Fe/H] distributions that are statistically similar to those observed in field stars of similar mass. On the other hand, stars that host planets below this limit show the well-known metallicity-giant planet frequency correlation. We discuss these results in light of various planet formation models and explore the implications they may have on our understanding of the formation of giant planets. In particular, we discuss the possibility that the existence of two separate populations of giant planets indicates that two different processes of formation are at play.
Type Ia supernovae (SNe Ia) have been used as excellent standardizable candles for measuring cosmic expansion, but their progenitors are still elusive. Here we report that the spectral diversity of SNe Ia is tied to their birthplace environments. We
The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets (JFCs). Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by th
In Papers I and II of this series, the existence of two distinct halo populations of stars have been found in the solar neighborhood. Precise relative ages and orbital parameters are determined for 67 halo and 16 thick-disk stars having metallicities
We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 d and 2.9721 d, masses of $0.527 pm 0.083$ M$_{J}$ and $0.783 pm 0.057$ M$_{J}$ and inflated radii of $1.89 pm 0.13$ R$_{J}$ and $1.59^{+0.1
We present a study of the relationship between black hole accretion rate (BHAR) and star formation rate (SFR) in a sample of giant elliptical galaxies. These galaxies, which live at the centers of galaxy groups and clusters, have star formation and b