ﻻ يوجد ملخص باللغة العربية
We present the discovery of the transiting exoplanets HAT-P-65b and HAT-P-66b, with orbital periods of 2.6055 d and 2.9721 d, masses of $0.527 pm 0.083$ M$_{J}$ and $0.783 pm 0.057$ M$_{J}$ and inflated radii of $1.89 pm 0.13$ R$_{J}$ and $1.59^{+0.16}_{-0.10}$ R$_{J}$, respectively. They orbit moderately bright ($V=13.145 pm 0.029$, and $V=12.993 pm 0.052$) stars of mass $1.212 pm 0.050$ M$_{odot}$ and $1.255^{+0.107}_{-0.054}$ M$_{odot}$. The stars are at the main sequence turnoff. While it is well known that the radii of close-in giant planets are correlated with their equilibrium temperatures, whether or not the radii of planets increase in time as their hosts evolve and become more luminous is an open question. Looking at the broader sample of well-characterized close-in transiting giant planets, we find that there is a statistically significant correlation between planetary radii and the fractional ages of their host stars, with a false alarm probability of only 0.0041%. We find that the correlation between the radii of planets and the fractional ages of their hosts is fully explained by the known correlation between planetary radii and their present day equilibrium temperatures, however if the zero-age main sequence equilibrium temperature is used in place of the present day equilibrium temperature then a correlation with age must also be included to explain the planetary radii. This suggests that, after contracting during the pre-main-sequence, close-in giant planets are re-inflated over time due to the increasing level of irradiation received from their host stars. Prior theoretical work indicates that such a dynamic response to irradiation requires a significant fraction of the incident energy to be deposited deep within the planetary interiors.
We report the discovery of three new transiting extrasolar planets orbiting moderately bright (V=11.1 to 12.4) F stars. The planets have periods of P = 2.6940 d to 4.4572 d, masses of 0.60 M_J to 0.80 M_J, and radii of 1.57 R_J to 1.73 R_J. They orbi
First identified from the HATNet wide-field photometric survey, these candidate transiting planets were then followed-up with a variety of photometric observations. Determining the planetary nature of the objects and characterizing the parameters of
We report the discovery of two exoplanets transiting high-jitter stars. HAT-P-32b orbits the bright V=11.289 star GSC 3281-00800, with a period P = 2.150008 d. The stellar and planetary masses and radii depend on the eccentricity of the system, which
We report the discovery and characterization of four transiting exoplanets by the HATNet survey. The planet HAT-P-50b has a mass of 1.35 M_J and a radius of 1.29 R_J, and orbits a bright (V = 11.8 mag) M = 1.27 M_sun, R = 1.70 R_sun star every P = 3.
We report the discovery by the HATNet survey of three new transiting extrasolar planets orbiting moderately bright (V=13.2, 12.8 and 11.9) stars. The planets have orbital periods of 4.3012, 3.1290, and 4.4631 days, masses of 0.39, 0.89, and 0.49 Mjup