ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel/PACS Point Source Catalogue Explanatory Supplement

70   0   0.0 ( 0 )
 نشر من قبل G\\'abor Marton
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Herschel Space Observatory was the fourth cornerstone mission in the European Space Agency (ESA) science programme. It had excellent broad band imaging capabilities in the far-infrared (FIR) and sub-millimetre part of the electromagnetic spectrum. Although the spacecraft finished observing in 2013, it left a large legacy dataset that is far from having been fully explored and still has a great potential for new scientific discoveries. The PACS and SPIRE photometric cameras observed about 8% of the sky in six different wavebands. This document describes the Herschel/PACS Point Source Catalogue (HPPSC), a FIR catalogue based on the broad-band photometric observations of the PACS instrument with filters centred at 70, 100 and 160 microns. We analysed 14842 combined, Level 2.5/Level 3 Herschel/PACS photometric observations. The PACS photometer maps were generated by the JScanam task of the Herschel Interactive Processing Environment (HIPE) v13.0.0. Sources were identified with the HIPE implementation of SUSSEXtractor, and the flux densities obtained by aperture photometry. We found a total of 108 319 point sources that are considered to be reliable in the 70 micron maps, 131 322 at 100 micron and 251 392 point sources in the 160 micron maps. In addition, our quality control algorithm identified 546 587 candidate sources that were found to be extended and 7 185 160 features which did not pass the signal-to-noise and other criteria to be considered reliable sources. These sources were included in the Extended Source List and Rejected Source List of the HPPSC, respectively. The calculated completeness and photometric accuracy values are based on simulations, where artificial sources were injected into the observational timeline with well controlled flux density values. The actual completeness is a complex function of the source flux, photometric band and the background complexity.



قيم البحث

اقرأ أيضاً

The Spectral and Photometric Imaging Receiver (SPIRE) was launched as one of the scientific instruments on board of the space observatory Herschel. The SPIRE photometer opened up an entirely new window in the Submillimeter domain for large scale mapp ing, that up to then was very difficult to observe. There are already several catalogs that were produced by individual Herschel science projects. Yet, we estimate that the objects of only a fraction of these maps will ever be systematically extracted and published by the science teams that originally proposed the observations. The SPIRE instrument performed its standard photometric observations in an optically very stable configuration, only moving the telescope across the sky, with variations in its configuration parameters limited to scan speed and sampling rate. This and the scarcity of features in the data that require special processing steps made this dataset very attractive for producing an expert reduced catalog of point sources that is being described in this document. The Catalog was extracted from a total of 6878 unmodified SPIRE scan map observations. The photometry was obtained by a systematic and homogeneous source extraction procedure, followed by a rigorous quality check that emphasized reliability over completeness. Having to exclude regions affected by strong Galactic emission, that pushed the limits of the four source extraction methods that were used, this catalog is aimed primarily at the extragalactic community. The result can serve as a pathfinder for ALMA and other Submillimeter and Far-Infrared facilities. 1,693,718 sources are included in the final catalog, splitting into 950688, 524734, 218296 objects for the 250mu m, 350mu m, and 500mu m bands, respectively. The catalog comes with well characterized environments, reliability, completeness, and accuracies, that single programs typically cannot provide.
159 - F. Schuller 2003
We present version 1.0 of the ISOGAL-DENIS Point Source Catalogue (PSC), containing more than 100,000 point sources detected at 7 and/or 15 micron in the ISOGAL survey of the inner Galaxy with the ISOCAM instrument on board the Infrared Space Observa tory (ISO). These sources are cross-identified, wherever possible, with near-infrared (0.8-2.2 micron) data from the DENIS survey. The overall surface covered by the ISOGAL survey is about 16 square degrees, mostly (95%) distributed near the Galactic plane (|b| < 1 deg), where the source extraction can become confusion limited and perturbed by the high background emission. Therefore, special care has been taken aimed at limiting the photometric error to ~0.2 magnitude down to a sensitivity limit of typically 10 mJy. The present paper gives a complete description of the entries and the information which can be found in this catalogue, as well as a detailed discussion of the data processing and the quality checks which have been completed. The catalogue is available via the VizieR Service at the Centre de Donnees Astronomiques de Strasbourg (CDS, http://vizier.u-strasbg.fr/viz-bin/VizieR/) and also via the server at the Institut dAstrophysique de Paris (http://www-isogal.iap.fr/). A more complete version of this paper, including a detailed description of the data processing, is available in electronic form through the ADS service.
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (alph a Boo, alpha Cet, alpha Tau, beta And, gamma Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is around 2% in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5% in the blue and green band and 2% in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5% uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum nu*Fnu = lambda*Flambda = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.
We present a flux calibration scheme for the PACS chopped point-source photometry observing mode based on the photometry of five stellar standard sources. This mode was used for science observations only early in the mission. Later, it was only used for pointing and flux calibration measurements. Its calibration turns this type of observation into fully validated data products in the Herschel Science Archive. Systematic differences in calibration with regard to the principal photometer observation mode, the scan map, are derived and amount to 5-6%. An empirical method to calibrate out an apparent response drift during the first 300 Operational Days is presented. The relative photometric calibration accuracy (repeatability) is as good as 1% in the blue and green band and up to 5% in the red band. Like for the scan map mode, inconsistencies among the stellar calibration models become visible and amount to 2% for the five standard stars used. The absolute calibration accuracy is therefore mainly limited by the model uncertainty, which is 5% for all three bands.
86 - Dario Fadda 2016
The Ge:Ga detectors used in the PACS spectrograph onboard the Herschel space telescope react to changes of the incident flux with a certain delay. This generates transient effects on the resulting signal which can be important and last for up to an h our. The paper presents a study of the effects of transients on the detected signal and proposes methods to mitigate them especially in the case of the unchopped mode. Since transients can arise from a variety of causes, we classified them in three main categories: transients caused by sudden variations of the continuum due to the observational mode used; transients caused by cosmic ray impacts on the detectors; transients caused by a continuous smooth variation of the continuum during a wavelength scan. We propose a method to disentangle these effects and treat them separately. In particular, we show that a linear combination of three exponential functions is needed to fit the response variation of the detectors during a transient. An algorithm to detect, fit, and correct transient effects is presented. The solution proposed to correct the signal for the effects of transients substantially improves the quality of the final reduction with respect to the standard methods used for archival reduction in the case where transient effects are most pronounced. The programs developed to implement the corrections are offered through two new interactive data reduction pipelines in the latest releases of the Herschel Interactive Processing Environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا