ﻻ يوجد ملخص باللغة العربية
We derive error estimates for the piecewise linear finite element approximation of the Laplace--Beltrami operator on a bounded, orientable, $C^3$, surface without boundary on general shape regular meshes. As an application, we consider a problem where the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error estimates that do not depend on the curvature on the high curvature region. Numerical experiments are provided.
We develop a finite element method for the Laplace-Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly us
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Lapl
Elliptic partial differential equations on surfaces play an essential role in geometry, relativity theory, phase transitions, materials science, image processing, and other applications. They are typically governed by the Laplace-Beltrami operator. W
In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on
In this paper we develop an evolution of the $C^1$ virtual elements of minimal degree for the approximation of the Cahn-Hilliard equation. The proposed method has the advantage of being conforming in $H^2$ and making use of a very simple set of degre