We develop a finite element method for the Laplace-Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly using Nitsches method. We prove optimal order a priori error estimates for piecewise continuous polynomials of order $k geq 1$ in the energy and $L^2$ norms that take the approximation of the surface and the boundary into account.
Elliptic partial differential equations on surfaces play an essential role in geometry, relativity theory, phase transitions, materials science, image processing, and other applications. They are typically governed by the Laplace-Beltrami operator. W
e present and analyze approximations by Surface Finite Element Methods (SFEM) of the Laplace-Beltrami eigenvalue problem. As for SFEM for source problems, spectral approximation is challenged by two sources of errors: the geometric consistency error due to the approximation of the surface and the Galerkin error corresponding to finite element resolution of eigenfunctions. We show that these two error sources interact for eigenfunction approximations as for the source problem. The situation is different for eigenvalues, where a novel situation occurs for the geometric consistency error: The degree of the geometric error depends on the choice of interpolation points used to construct the approximate surface. Thus the geometric consistency term can sometimes be made to converge faster than in the eigenfunction case through a judicious choice of interpolation points.
We derive error estimates for the piecewise linear finite element approximation of the Laplace--Beltrami operator on a bounded, orientable, $C^3$, surface without boundary on general shape regular meshes. As an application, we consider a problem wher
e the domain is split into two regions: one which has relatively high curvature and one that has low curvature. Using a graded mesh we prove error estimates that do not depend on the curvature on the high curvature region. Numerical experiments are provided.
We prove new a posteriori error estimates for surface finite element methods (SFEM). Surface FEM approximate solutions to PDE posed on surfaces. Prototypical examples are elliptic PDE involving the Laplace-Beltrami operator. Typically the surface is
approximated by a polyhedral or higher-order polynomial approximation. The resulting FEM exhibits both a geometric consistency error due to the surface approximation and a standard Galerkin error. A posteriori estimates for SFEM require practical access to geometric information about the surface in order to computably bound the geometric error. It is thus advantageous to allow for maximum flexibility in representing surfaces in practical codes when proving a posteriori error estimates for SFEM. However, previous a posteriori estimates using general parametric surface representations are suboptimal by one order on $C^2$ surfaces. Proofs of error estimates optimally reflecting the geometric error instead employ the closest point projection, which is defined using the signed distance function. Because the closest point projection is often unavailable or inconvenient to use computationally, a posteriori estimates using the signed distance function have notable practical limitations. We merge these two perspectives by assuming {it practical} access only to a general parametric representation of the surface, but using the distance function as a {it theoretical} tool. This allows us to derive sharper geometric estimators which exhibit improved experimentally observed decay rates when implemented in adaptive surface finite element algorithms.
For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of
these results for the Laplace-Beltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be employed to prove the Lipschitz continuity for the solutions of a general class of two-phase free boundary problems on Riemannian manifolds.
We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $subset$ R d , d = 2 or 3$, subject
to no flow boundary conditions. Our schemes are based on approximating the pressure and the symmetric conforma-tion tensor by either (a) piecewise constants or (b) continuous piecewise linears. In case (a) the velocity field is approximated by continuous piecewise quadratics ($d = 2$) or a reduced version, where the tangential component on each simplicial edge ($d = 2$) or face ($d = 3$) is linear. In case (b) the velocity field is approximated by continuous piecewise quadratics or the mini-element. We show that both of these types of schemes, based on the backward Euler type time discretiza-tion, satisfy a free energy bound, which involves the logarithm of both the conformation tensor and a linear function of its trace, without any constraint on the time step. Furthermore, for our approximation (b) in the presence of an additional dissipative term in the stress equation, the so-called FENE-P model with stress diffusion, we show (subsequence) convergence in the case $d = 2$, as the spatial and temporal discretization parameters tend to zero, towards global-in-time weak solutions of this FENE-P system. Hence, we prove existence of global-in-time weak solutions to the FENE-P model with stress diffusion in two spatial dimensions.
E. Burman
,P. Hansbo
,M.G. Larson
.
(2015)
.
"Finite Element Approximation of the Laplace-Beltrami Operator on a Surface with Boundary"
.
Mats G Larson
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا