ﻻ يوجد ملخص باللغة العربية
One of the remaining obstacles to approaching the theoretical efficiency limit of crystalline silicon (c-Si) solar cells is the exceedingly high interface recombination loss for minority carriers at the Ohmic contacts. In ultra-thin-film c-Si solar cells, this contact recombination loss is far more severe than for traditional thick cells due to the smaller volume and higher minority carrier concentration of the former. This paper presents a novel design of an electron passing (Ohmic) contact to n-type Si that is hole-blocking with significantly reduced hole recombination. This contact is formed by depositing a thin titanium dioxide (TiO2) layer to form a silicon metal-insulator-semiconductor (MIS) contact. A 2 {mu}m thick Si cell with this TiO2 MIS contact achieved an open circuit voltage (Voc) of 645 mV, which is 10 mV higher than that of an ultra-thin cell with a metal contact. This MIS contact demonstrates a new path for ultra-thin-film c-Si solar cells to achieve high efficiencies as high as traditional thick cells, and enables the fabrication of high-efficiency c-Si solar cells at a lower cost.
A coupled optoelectronic model was implemented along with the differential evolution algorithm to assess the efficacy of grading the bandgap of the CZTSSe layer for enhancing the power conversion efficiency of thin-film CZTSSe solar cells. Both linea
Engineering the energetics of perovskite photovoltaic devices through the deliberate introduction of dipoles to control the built-in potential of the devices offers the opportunity to enhance their performance without the need to modify the active la
An optoelectronic optimization was carried out for an AlGaAs solar cell containing (i) an n-AlGaAs absorber layer with a graded bandgap and (ii) a periodically corrugated Ag backreflector combined with localized ohmic Pd-Ge-Au backcontacts. The bandg
We report on very high enhancement of thin layers absorption through band-engineering of a photonic crystal structure. We realized amorphous silicon (aSi) photonic crystals, where slow light modes improve absorption efficiency. We show through simula
Herein, we report on the synthesis and investigation of two triazino-isoquinoline tetrafluoroborate electrolytes as hole-blocking layers in methylammonium triiodide perovskite photovoltaic devices with fullerene electron extraction layer. We find tha