ترغب بنشر مسار تعليمي؟ اضغط هنا

Absorption enhancement in amorphous silicon photonic crystals for thin film photovoltaic solar cells

142   0   0.0 ( 0 )
 نشر من قبل Ounsi El Daif
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on very high enhancement of thin layers absorption through band-engineering of a photonic crystal structure. We realized amorphous silicon (aSi) photonic crystals, where slow light modes improve absorption efficiency. We show through simulation that an increase of the absorption by a factor of 1.5 is expected for a film of aSi. The proposal is then validated by an experimental demonstration, showing an important increase of the absorption of a layer of aSi over a spectral range of 0.32-0.76 microns.



قيم البحث

اقرأ أيضاً

Following the recent success of monolithically integrated Perovskite/Si tandem solar cells, great interest has been raised in searching for alternative wide bandgap top-cell materials with prospects of a fully earth-abundant, stable and efficient tan dem solar cell. Thin film chalcogenides (TFCs) such as the Cu2ZnSnS4 (CZTS) could be suitable top-cell materials. However, TFCs have the disadvantage that generally at least one high temperature step (>500 C) is needed during the synthesis, which could contaminate the Si bottom cell. Here, we systematically investigate the monolithic integration of CZTS on a Si bottom solar cell. A thermally resilient double-sided Tunnel Oxide Passivated Contact (TOPCon) structure is used as bottom cell. A thin (<25 nm) TiN layer between the top and bottom cells, doubles as diffusion barrier and recombination layer. We show that TiN successfully mitigates in-diffusion of CZTS elements into the c-Si bulk during the high temperature sulfurization process, and find no evidence of electrically active deep Si bulk defects in samples protected by just 10 nm TiN. Post-process minority carrier lifetime in Si exceeded 1.5 ,s. i.e., a promising implied open-circuit voltage (i-Voc) of 715 mV after the high temperature sulfurization. Based on these results, we demonstrate a first proof-of-concept two-terminal CZTS/Si tandem device with an efficiency of 1.1% and a Voc of 900 mV. A general implication of this study is that the growth of complex semiconductors on Si using high temperature steps is technically feasible, and can potentially lead to efficient monolithically integrated two-terminal tandem solar cells.
This paper presents the preliminary results of optical characterization using spectroscopic ellipsometry of wurtzite indium gallium nitride (InxGa1-xN) thin films with medium indium content (0.38<x<0.68) that were deposited on silicon dioxide using p lasma-enhanced evaporation. A Kramers-Kronig consistent parametric analytical model using Gaussian oscillators to describe the absorption spectra has been developed to extract the real and imaginary components of the dielectric function ({epsilon}1, {epsilon}2) of InxGa1-xN films. Scanning electron microscope (SEM) images are presented to examine film microstructure and verify film thicknesses determined from ellipsometry modelling. This fitting procedure, model, and parameters can be employed in the future to extract physical parameters from ellipsometric data from other InxGa1-xN films.
Using a combination of quantum and classical computational approaches, we model the electronic structure in amorphous silicon in order gain understanding of the microscopic atomic configurations responsible for light induced degradation of solar cell s. We demonstrate that regions of strained silicon bonds could be as important as dangling bonds for creating traps for charge carriers. Further, our results show that defects are preferentially formed when a region in the amorphous silicon contains a hole and a light-induced excitation. These results agree with the puzzling dependencies on temperature, time, and pressure observed experimentally.
Historically, the design of hybrid solar photovoltaic thermal (PVT) systems has focused on cooling crystalline silicon (c-Si)-based photovoltaic (PV) devices to avoid temperature-related losses. This approach neglects the associated performance losse s in the thermal system and leads to a decrease in the overall exergy of the system. Consequently, this paper explores the use of hydrogenated amorphous silicon (a-Si:H) as an absorber material for PVT in an effort to maintain higher and more favourable operating temperatures for the thermal system. Amorphous silicon not only has a smaller temperature coefficient than c-Si, but also can display improved PV performance over extended periods of higher temperatures by annealing out defect states from the Staebler-Wronski effect. In order to determine the potential improvements in a-Si:H PV performance associated with increased thicknesses of the i-layers made possible by higher operating temperatures, a-Si:H PV cells were tested under 1 sun illumination (AM1.5) at temperatures of 25oC (STC), 50oC (representative PV operating conditions), and 90 oC (representative PVT operating conditions). PV cells with an i-layer thicknesses of 420, 630 and 840 nm were evaluated at each temperature. Results show that operating a-Si:H-based PV at 90 oC, with thicker i-layers than the cells currently used in commercial production, provided a greater power output compared to the thinner cells operating at either PV or PVT operating temperatures. These results indicate that incorporating a-Si:H as the absorber material in a PVT system can improve the thermal performance, while simultaneously improving the electrical performance of a-Si:H-based PV.
We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nit ride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebler-Wronski effect (SWE) in a-Si:H solar cell can be minimized by the additional OE in the NDPSC and self-annealing of defect states by additional heat generation, thus likely improving the overall stabilized characteristics of a-Si:H solar cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا