ﻻ يوجد ملخص باللغة العربية
In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.
In this paper, we investigate geometric properties of monotone systems by studying their isostables and basins of attraction. Isostables are boundaries of specific forward-invariant sets defined by the so-called Koopman operator, which provides a lin
Reachability analysis aims at identifying states reachable by a system within a given time horizon. This task is known to be computationally expensive for linear hybrid systems. Reachability analysis works by iteratively applying continuous and discr
Frequency domain analysis of linear time-invariant (LTI) systems in feedback with static nonlinearities is a classical and fruitful topic of nonlinear systems theory. We generalize this approach beyond equilibrium stability analysis with the aim of c
We study a constrained optimal control problem for an ensemble of control systems. Each sub-system (or plant) evolves on a matrix Lie group, and must satisfy given state and control action constraints pointwise in time. In addition, certain multiplex
We study partition of networks into basins of attraction based on a steepest ascent search for the node of highest degree. Each node is associated with, or attracted to its neighbor of maximal degree, as long as the degree is increasing. A node that