ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties of Isostables and Basins of Attraction of Monotone Systems

92   0   0.0 ( 0 )
 نشر من قبل Aivar Sootla
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate geometric properties of monotone systems by studying their isostables and basins of attraction. Isostables are boundaries of specific forward-invariant sets defined by the so-called Koopman operator, which provides a linear infinite-dimensional description of a nonlinear system. First, we study the spectral properties of the Koopman operator and the associated semigroup in the context of monotone systems. Our results generalize the celebrated Perron-Frobenius theorem to the nonlinear case and allow us to derive geometric properties of isostables and basins of attraction. Additionally, we show that under certain conditions we can characterize the bounds on the basins of attraction under parametric uncertainty in the vector field. We discuss computational approaches to estimate isostables and basins of attraction and illustrate the results on two and four state monotone systems.



قيم البحث

اقرأ أيضاً

In this paper, we study geometric properties of basins of attraction of monotone systems. Our results are based on a combination of monotone systems theory and spectral operator theory. We exploit the framework of the Koopman operator, which provides a linear infinite-dimensional description of nonlinear dynamical systems and spectral operator-theoretic notions such as eigenvalues and eigenfunctions. The sublevel sets of the dominant eigenfunction form a family of nested forward-invariant sets and the basin of attraction is the largest of these sets. The boundaries of these sets, called isostables, allow studying temporal properties of the system. Our first observation is that the dominant eigenfunction is increasing in every variable in the case of monotone systems. This is a strong geometric property which simplifies the computation of isostables. We also show how variations in basins of attraction can be bounded under parametric uncertainty in the vector field of monotone systems. Finally, we study the properties of the parameter set for which a monotone system is multistable. Our results are illustrated on several systems of two to four dimensions.
We study partition of networks into basins of attraction based on a steepest ascent search for the node of highest degree. Each node is associated with, or attracted to its neighbor of maximal degree, as long as the degree is increasing. A node that has no neighbors of higher degree is a peak, attracting all the nodes in its basin. Maximally random scale-free networks exhibit different behavior based on their degree distribution exponent $gamma$: for small $gamma$ (broad distribution) networks are dominated by a giant basin, whereas for large $gamma$ (narrow distribution) there are numerous basins, with peaks attracting mainly their nearest neighbors. We derive expressions for the first two moments of the number of basins. We also obtain the complete distribution of basin sizes for a class of hierarchical deterministic scale-free networks that resemble random nets. Finally, we generalize the problem to regular networks and lattices where all degrees are equal, and thus the attractiveness of a node must be determined by an assigned weight, rather than the degree. We derive the complete distribution of basins of attraction resulting from randomly assigned weights in one-dimensional chains.
We present an experiment that systematically probes the basins of attraction of two fixed points of a nonlinear nanomechanical resonator and maps them out with high resolution. We observe a separatrix which progressively alters shape for varying driv e strength and changes the relative areas of the two basins of attraction. The observed separatrix is blurred due to ambient fluctuations, including residual noise in the drive system, which cause uncertainty in the preparation of an initial state close to the separatrix. We find a good agreement between the experimentally mapped and theoretically calculated basins of attraction.
In this work we investigate dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our aim is to design methods which guarantee strong convergence of trajectories towards the minimum norm solution of the underlying monotone inclusion problem. To that end, we investigate in detail the asymptotic behavior of dynamical systems perturbed by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector field of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards minimum norm solutions to an underlying monotone inclusion problem, and we illustrate numerically qualitative differences between these two complementary regularization strategies. The so-constructed dynamical systems are either of Krasnoselskii-Mann, of forward-backward type or of forward-backward-forward type, and with the help of injected regularization we demonstrate seminal results on the strong convergence of Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.
We consider the problem of asymptotic reconstruction of the state and parameter values in systems of ordinary differential equations. A solution to this problem is proposed for a class of systems of which the unknowns are allowed to be nonlinearly pa rameterized functions of state and time. Reconstruction of state and parameter values is based on the concepts of weakly attracting sets and non-uniform convergence and is subjected to persistency of excitation conditions. In absence of nonlinear parametrization the resulting observers reduce to standard estimation schemes. In this respect, the proposed method constitutes a generalization of the conventional canonical adaptive observer design.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا