ﻻ يوجد ملخص باللغة العربية
Deep ultraviolet (UV) optical emission below 250 nm (~5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (~5.7 to 5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These MBE-grown extreme quantum-confinement GaN/AlN heterostructures exhibit internal quantum efficiency as high as 40% at wavelengths as short as 219 nm. These observations, together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such new binary quantum disk active regions offers unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.
Electrically injected deep ultra-violet (UV) emission is obtained using monolayer (ML) thin GaN/AlN quantum structures as active regions. The emission wavelength is tuned by controlling the thickness of ultrathin GaN layers with monolayer precision u
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN Quantum Disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cath
Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their elec
We describe studies on the nanoscale transport dynamics of carriers in strained AlN/GaN/AlN quantum wells: an electron-hole bilayer charge system with large difference in transport properties between the two charge layers. From electronic band diagra
We model the quantum confined Stark effect in AlN/GaN/AlN heterostructures grown on top of [0001]-oriented GaN nanowires. The pyro- and piezoelectric field are computed in a self-consistent approach, making no assumption about the pinning of the Ferm