ﻻ يوجد ملخص باللغة العربية
We model the quantum confined Stark effect in AlN/GaN/AlN heterostructures grown on top of [0001]-oriented GaN nanowires. The pyro- and piezoelectric field are computed in a self-consistent approach, making no assumption about the pinning of the Fermi level, but including an explicit distribution of surface states which can act as a source or trap of carriers. We show that the pyro- and piezoelectric field bends the conduction and valence bands of GaN and AlN and transfers charges from the top surface of the nanowire to an electron gas below the heterostructure. As a consequence, the Fermi level is likely pinned near the valence band of AlN at the top surface. The electron gas and surface charges screen the electric field, thereby reducing the Stark effect. The efficient strain relaxation further weakens the piezoelectric polarization. We compute the electronic properties of the heterostructures with a sp3d5s* tight-binding model, and compare the theoretical predictions with the available experimental data.
We present a systematic study of the influence of elastic strain relaxation on the built-in electrostatic potentials and the electronic properties of axial (In,Ga)N/GaN nanowire heterostructures. We employ and evaluate analytical and numerical approa
Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their elec
We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN Quantum Disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cath
In this paper, we study band-to-band and intersubband characteristics of GaN/AlN heterostructures (planar and nanowires) structurally designed to absorb in the short-wavelength infrared region, particularly at 1.55 microns. We compare the effect of d
Semiconductor nanowires (NWs) have a broad range of applications for nano- and optoelectronics. The strain field of gallium nitride (GaN) NWs could be significantly changed when contacts are applied to them to form a final device, especially consider