ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the phase diagram of copper intercalated TiSe$_2$ single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific-heat, and angle-resolved photoemission spectroscopy measurements. A series of the Cu$_x$TiSe$_2$ samples from three different sources with various copper content $x$ and superconducting critical temperatures $T_c$ have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, $H_{c1}$. We then show that the temperature dependence of the superfluid density deduced from magnetic measurements (both $H_{c1}$ and TDO techniques) clearly suggests the existence of a small energy gap in the system, with a coupling strength $2Delta_s sim [2.4-2.8]k_BT_c$, regardless of the copper content, in puzzling contradiction with specific heat measurements which can be well described by one single large gap $2Delta_l sim [3.7-3.9]k_BT_c$. Finally, our measurements reveal a non-trivial doping dependence of the condensation energy, which remains to be understood.
Single crystals of Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$, $x<0.37$, have been grown and characterized by structural, magnetic and transport measurements. These measurements show that the structural/magnetic phase transition found in pure BaFe$_2$As$_2$ at 1
A series of high quality NaFe$_{1-x}$Cu$_x$As single crystals has been grown by a self-flux technique, which were systematically characterized via structural, transport, thermodynamic, and high pressure measurements. Both the structural and magnetic
Single crystalline samples of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ with $x < 0.12$ have been grown and characterized via microscopic, thermodynamic and transport measurements. With increasing Co substitution, the thermodynamic and transport signatures of t
Superconductivity of YBa$_2$Cu$_3$O$_{7-delta}$ single crystals was investigated in small magnetic fields. In magnetic measurements the superconducting transition for $textbf{H} | c$ appears 0.4 K higher than for $textbf{H} bot c$. In this temperatur
Unconventional superconductivity is characterized by the spontaneous symmetry breaking of the macroscopic superconducting wavefunction in addition to the gauge symmetry breaking, such as rotational-symmetry breaking with respect to the underlying cry