ترغب بنشر مسار تعليمي؟ اضغط هنا

BKT transition observed in magnetic and electric properties of YBa$_2$Cu$_3$O$_{7-delta}$ single crystals

100   0   0.0 ( 0 )
 نشر من قبل Krzysztof Rogacki
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity of YBa$_2$Cu$_3$O$_{7-delta}$ single crystals was investigated in small magnetic fields. In magnetic measurements the superconducting transition for $textbf{H} | c$ appears 0.4 K higher than for $textbf{H} bot c$. In this temperature range superconductivity is two-dimensional and the total thickness of superconducting layers is about 0.83 of the sample thickness, which is a consequence of the occurrence of the quasi-insulating plane in the unit cell of the crystal structure. Resistivity in the textit{ab}-plane and along the textit{c}-axis was measured simultaneously. In these measurements two-dimensional superconductivity was observed in a temperature range of 0.6-0.8 K with the clear signs of the Berezinskii-Kosterlitz-Touless (BKT) transition which occurs approximately 0.15 K below $T_c$, the mean-field transition temperature.



قيم البحث

اقرأ أيضاً

292 - Hua Xu , Su Li , M. C. Sullivan 2009
We have studied the normal-to-superconducting phase transition in optimally-doped YBa$_2$Cu$_3$O$_{7-delta}$ in zero external magnetic field using a variety of different samples and techniques. Using DC transport measurements, we find that the dynami cal critical exponent $z=1.54pm0.14$, and the static critical exponent $ u=0.66pm0.10$ for both films (when finite-thickness effects are included in the data analysis) and single crystals (where finite-thickness effects are unimportant). We also measured thin films at different microwave frequencies and at different powers, which allowed us to systematically probe different length scales to avoid finite-thickness effects. DC transport measurements were also performed on the films used in the microwave experiments to provide a further consistency check. These microwave and DC measurements yielded a value of z consistent with the other results, $z=1.55pm0.15$. The neglect of finite-thickness, finite-current, and finite-frequency effects may account for the wide ranges of values for $ u$ and $z$ previously reported in the literature.
72 - Hong Gao , Cong Ren , Lei Shan 2006
The temperature and field dependence of reversible magnetization have been measured on a YBa$_2$Cu$_3$O$_{7-delta}$ single crystal at six different doping concentrations. It is found that the data above 2 T can be described by the scaling law based o n the GL-LLL (lowest Landau level approach based on Ginzburg-Landau theory) critical fluctuation theory yielding the values of the slope of upper critical field $-mathrm{d}H_{mathrm{c2}}(T)/mathrm{d}T$ near $T_mathrm{c}$. This set of values is self-consistent with that obtained in doing the universal scaling for the six samples. Based on a simple Ginzburg-Landau approach, we determined the doping dependence of the coherence length $xi$ which behaves in a similar way as that determined from $xi= hbar v_mathrm{F}/E_mathrm{sc}$ with $E_mathrm{sc}$ the superconducting energy scale. Our results may suggest a growing coherence length towards more underdoping.
100 - B. Maiorov , E. Osquiguil 2001
We report on the scaling of transport properties around the vortex melting in YBa$_2$Cu$_3$O$_{7- delta}$ oriented-twin single crystals in applied magnetic fields between 1T and 18T. We find that for all the measured field range the linear resistivit y scales as $rho (t,theta) sim t^{sy} {cal F}_{pm} (sin(theta)t^{-sx})$, with $t=|T-T_{BG}|$ and $theta$ the angle between de planar defects and the magnetic field. The scaling is valid only for angles where the transition temperature $T_{BG} (theta)$ shows a cusp. The critical exponents $sx$ and $sy$ are in agreement with the values predicted by Lidmar and Wallin only at magnetic fields below 4T. A change in the value of $sx$ from $sx = 1 pm 0.2$ to $sx = 3 pm 0.2$ at around $H^{cr} approx $ 4T when the magnetic field is increased, is responsible for changes in the shape of the $T_{BG} (theta)$ curve and in the dependence of the linear dissipation on temperature and angle. The results strongly suggest the existence of a different vortex glassy phase in twinned crystals compared to the Bose-glass state found in samples with linear defects.
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-delta}$ thin films to date have been performed on films where the textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on th e magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of $j_c$, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due to the anisotropy of the material. As a consequence of this, it is difficult to distinguish between proposed FLL structure models on the basis of angular critical current density measurements on textit{c}-axis films. Films grown on mis-cut (vicinal) substrates have a reduced measurement symmetry and thus provide a greater insight into the critical current anisotropy. In this paper previous descriptions of the magnetic field angle dependence of $j_c$ in YBa$_2$Cu$_3$O$_{7-delta}$ are reviewed. Measurements on YBa$_2$Cu$_3$O$_{7-delta}$ thin films grown on a range of vicinal substrates are presented and the results interpreted in terms of the structure and dimensionality of the FLL in YBa$_2$Cu$_3$O$_{7-delta}$. There is strong evidence for a transition in the structure of the flux line lattice depending on magnetic field magnitude, orientation and temperature. As a consequence, a simple scaling law can not, by itself, describe the observed critical current anisotropy in YBa$_2$Cu$_3$O$_{7-delta}$. The experimentally obtained $j_c(theta)$ behaviour of YBCO is successfully described in terms of a kinked vortex structure for fields applied near parallel to the textit{a-b} planes.
We report on the growth and characterization of ultrathin YBa$_2$Cu$_3$O$_{7-delta}$ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have been also successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films, and critical current densities, which are only limited by vortex dynamics. The 10 nm thick YBCO nanowires without the Au capping present hysteretic current voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. Such bistability is associated in NbN nanowires to the presence of localized normal domains within the superconductor. The presence of the voltage switch, in ultrathin nanostructures characterized by high sheet resistance values, though preserving high quality superconducting properties, make our nanowires very attractive devices to engineer single photon detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا