ﻻ يوجد ملخص باللغة العربية
We study the Harmonic and Dirac Oscillator problem extended to a three-dimensional noncom- mutative space where the noncommutativity is induced by a shift of the dynamical variables with generators of SL(2;R) in a unitary irreducible representation. The Hilbert space gets the structure of a direct product with the representation space as a factor, where there exist operators which realize the algebra of Lorentz transformations. The spectrum of these models are considered in perturbation theory, both for small and large noncommutativity parameters, finding no constraints between coordinates and momenta noncom- mutativity parameters. Since the representation space of the unitary irreducible representations SL(2;R) can be realized in terms of spaces of square-integrable functions, we conclude that these models are equivalent to quantum mechanical models of particles living in a space with an additional compact dimension. PACS: 03.65.-w; 11.30.Cp; 02.40.Gh
We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in $1 + 1$ dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative p
We study the Dirac and the klein-Gordon oscillators in a noncommutative space. It is shown that the Klein-Gordon oscillator in a noncommutative space has a similar behaviour to the dynamics of a particle in a commutative space and in a constant magne
We interpret, in the realm of relativistic quantum field theory, the tangential operator given by Coleman, Mandula as an appropriate coordinate operator. The investigation shows that the operator generates a Snyder-like noncommutative spacetime with
We introduce a framework in noncommutative geometry consisting of a $*$-algebra $mathcal A$, a bimodule $Omega^1$ endowed with a derivation $mathcal Ato Omega^1$ and with a Hermitian structure $Omega^1otimes bar{Omega}^1to mathcal A$ (a noncommutativ
We study the stationary problem of a charged Dirac particle in (2+1) dimensions in the presence of a uniform magnetic field B and a singular magnetic tube of flux Phi = 2 pi kappa/e. The rotational invariance of this configuration implies that the su