ﻻ يوجد ملخص باللغة العربية
Partition functions arise in statistical physics and probability theory as the normalizing constant of Gibbs measures and in combinatorics and graph theory as graph polynomials. For instance the partition functions of the hard-core model and monomer-dimer model are the independence and matching polynomials respectively. We show how stability results follow naturally from the recently developed occupancy method for maximizing and minimizing physical observables over classes of regular graphs, and then show these stability results can be used to obtain tight extremal bounds on the individual coefficients of the corresponding partition functions. As applications, we prove new bounds on the number of independent sets and matchings of a given size in regular graphs. For large enough graphs and almost all sizes, the bounds are tight and confirm the Upper Matching Conjecture of Friedland, Krop, and Markstrom and a conjecture of Kahn on independent sets for a wide range of parameters. Additionally we prove tight bounds on the number of $q$-colorings of cubic graphs with a given number of monochromatic edges, and tight bounds on the number of independent sets of a given size in cubic graphs of girth at least $5$.
Let $G$ be a simple graph with $2n$ vertices and a perfect matching. The forcing number of a perfect matching $M$ of $G$ is the smallest cardinality of a subset of $M$ that is contained in no other perfect matching of $G$. Let $f(G)$ and $F(G)$ denot
The quantum adversary method is a versatile method for proving lower bounds on quantum algorithms. It yields tight bounds for many computational problems, is robust in having many equivalent formulations, and has natural connections to classical lowe
Given a hypergraph $H$ and a weight function $w: V rightarrow {1, dots, M}$ on its vertices, we say that $w$ is isolating if there is exactly one edge of minimum weight $w(e) = sum_{i in e} w(i)$. The Isolation Lemma is a combinatorial principle intr
The Jacobian elliptic functions are standard forms of elliptic functions, and they were independently introduced by C.G.J. Jacobi and N.H. Abel. In this paper, we study the unimodality of Taylor expansion coefficients of the Jacobian elliptic functio
If A is infinite and well-ordered, then |2^A|<=|Part(A)|<=|A^A|.