ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy of an autoequivalence on Calabi-Yau manifolds

104   0   0.0 ( 0 )
 نشر من قبل Yu-Wei Fan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Yu-Wei Fan




اسأل ChatGPT حول البحث

We prove that the categorical entropy of the autoequivalence $T_{mathcal{O}}circ(-otimesmathcal{O}(-1))$ on a Calabi-Yau manifold is the unique positive real number $lambda$ satisfying $$ sum_{kgeq 1}frac{chi(mathcal{O}(k))}{e^{klambda}}=e^{(d-1)t}. $$ We then use this result to construct the first counterexamples of a conjecture on categorical entropy by Kikuta and Takahashi.



قيم البحث

اقرأ أيضاً

We compute numerical approximations of the period integrals for eleven rigid double octic Calabi--Yau threefolds and compare them with the periods of corresponding weight our cusp forms and find, as to be expected, commensurabilities. These give info rmation on character of the correspondences of these varieties with the associated Kuga-Sato modular threefolds.
In this paper we study Higgs and co-Higgs $G$-bundles on compact Kahler manifolds $X$. Our main results are: (1) If $X$ is Calabi-Yau, and $(E,,theta)$ is a semistable Higgs or co-Higgs $G$-bundle on $X$, then the principal $G$-bundle $E$ is semistab le. In particular, there is a deformation retract of ${mathcal M}_H(G)$ onto $mathcal M(G)$, where $mathcal M(G)$ is the moduli space of semistable principal $G$-bundles with vanishing rational Chern classes on $X$, and analogously, ${mathcal M}_H(G)$ is the moduli space of semistable principal Higgs $G$-bundles with vanishing rational Chern classes. (2) Calabi-Yau manifolds are characterized as those compact Kahler manifolds whose tangent bundle is semistable for every Kahler class, and have the following property: if $(E,,theta)$ is a semistable Higgs or co-Higgs vector bundle, then $E$ is semistable.
134 - Duco van Straten 2017
Motivated by mirror symmetry of one-parameter models, an interesting class of Fuchsian differential operators can be singled out, the so-called Calabi--Yau operators, introduced by Almkvist and Zudilin. They conjecturally determine $Sp(4)$-local syst ems that underly a $mathbb{Q}$-VHS with Hodge numbers [h^{3 0}=h^{2 1}=h^{1 2}=h^{0 3}=1] and in the best cases they make their appearance as Picard--Fuchs operators of families of Calabi--Yau threefolds with $h^{12}=1$ and encode the numbers of rational curves on a mirror manifold with $h^{11}=1$. We review some of the striking properties of this rich class of operators.
192 - Jinsong Xu 2016
We prove a structure theorem for the Albanese maps of varieties with Q-linearly trivial log canonical divisors. Our start point is the action of a nonlinear algebraic group on a projective variety.
In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا