ترغب بنشر مسار تعليمي؟ اضغط هنا

Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams

123   0   0.0 ( 0 )
 نشر من قبل Takahiro Ueda
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain the construction of Forcer, a FORM program for the reduction of four-loop massless propagator-type integrals to master integrals. The resulting program performs parametric IBP reductions similar to the three-loop Mincer program. We show how one can solve many systems of IBP identities parametrically in a computer-assisted manner. Next, we discuss the structure of the Forcer program, which involves recognizing reduction actions for each topology, applying symmetries, and transitioning between topologies after edges have been removed. This part is entirely precomputed and automatically generated. We give examples of recent applications of Forcer, and study the performance of the program. Finally we demonstrate how to use the Forcer package and sketch how to prepare physical diagrams for evaluation by Forcer.



قيم البحث

اقرأ أيضاً

We evaluate three typical four-loop non-planar massless propagator diagrams in a Taylor expansion in dimensional regularization parameter $epsilon=(4-d)/2$ up to transcendentality weight twelve, using a recently developed method of one of the present coauthors (R.L.). We observe only multiple zeta values in our results.
We evaluate, exactly in d, the master integrals contributing to massless three-loop QCD form factors. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition im plemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm. Using our results for the master integrals we obtain analytical expressions for two missing constants in the ep-expansion of the two most complicated master integrals and present the form factors in a completely analytic form.
119 - A.V. Smirnov , M. Tentyukov 2010
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
113 - R.N. Lee , V.A. Smirnov 2010
We evaluate analytically higher terms of the epsilon-expansion of the three-loop master integrals corresponding to three-loop quark and gluon form factors and to the three-loop master integrals contributing to the electron g-2 in QED up to the transc endentality weight typical to four-loop calculations, i.e. eight and seven, respectively. The calculation is based on a combination of a method recently suggested by one of the authors (R.L.) with other techniques: sector decomposition implemented in FIESTA, the method of Mellin--Barnes representation, and the PSLQ algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا