ﻻ يوجد ملخص باللغة العربية
A series of brief reviews collected in the present issue present various candidates for cosmological Dark Matter (DM) predicted by models of particle physics. The range from superlight axions to extended objects is covered. Though the possible list of candidates is far from complete it gives the flavor of the extensive field of Dark matter particle physics.
micrOMEGAs is a code to compute dark matter observables in generic extensions of the standard model. This version of micrOMEGAs includes a generalization of the Boltzmann equations to take into account the possibility of two dark matter candidates. T
We revisit the possibility of light scalar dark matter, in the MeV to GeV mass bracket and coupled to electrons through fermion or vector mediators, in light of significant experimental and observational advances that probe new physics below the GeV-
In these brief lecture notes, we introduce sterile neutrinos as dark matter candidates. We discuss in particular their production via oscillations, their radiative decay, as well as possible observational signatures and constraints.
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensi
Dark matter made from non-thermally produced bosons can have very low, possibly sub-eV masses. Axions and hidden photons are prominent examples of such dark very weakly interacting light (slim) particles (WISPs). A suitable mechanism for their non-th