ﻻ يوجد ملخص باللغة العربية
We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.
Ultralight scalar dark matter can interact with all massive Standard Model particles through a universal coupling. Such a coupling modifies the Standard Model particle masses and affects the dynamics of Big Bang Nucleosynthesis. We model the cosmolog
Starting from the evidence that dark matter indeed exists and permeates the entire cosmos, various bounds on its properties can be estimated. Beginning with the cosmic microwave background and large scale structure, we summarize bounds on the ultrali
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requirin
We report on the possibility that the Dark Matter particle is a stable, neutral, as-yet-undiscovered hadron in the standard model. The existence of a compact color-flavor-spin singlet sexaquark (S, uuddss) with mass ~2m_p, is compatible with current
Within the standard propagation scenario, the flavor ratios of high-energy cosmic neutrinos at neutrino telescopes are expected to be around the democratic benchmark resulting from hadronic sources, $left( 1 : 1 : 1 right)_oplus$. We show how the cou