ترغب بنشر مسار تعليمي؟ اضغط هنا

A spatio-temporal process-convolution model for quantifying health inequalities in respiratory prescription rates in Scotland

255   0   0.0 ( 0 )
 نشر من قبل Duncan Lee
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Duncan Lee




اسأل ChatGPT حول البحث

The rates of respiratory prescriptions vary by GP surgery across Scotland, suggesting there are sizeable health inequalities in respiratory ill health across the country. The aim of this paper is to estimate the magnitude, spatial pattern and drivers of this spatial variation. Monthly data on respiratory prescriptions are available at the GP surgery level, which creates an interesting methodological challenge as these data are not the classical geostatistical, areal unit or point process data types. A novel process-convolution model is proposed, which extends existing methods by being an adaptive smoother via a random weighting scheme and using a tapering function to reduce the computational burden. The results show that particulate air pollution, poverty and ethnicity all drive the health inequalities, while there are additional regional inequalities in rates after covariate adjustment.



قيم البحث

اقرأ أيضاً

Ice sheet models are used to study the deglaciation of North America at the end of the last ice age (past 21,000 years), so that we might understand whether and how existing ice sheets may reduce or disappear under climate change. Though ice sheet mo dels have a few parameters controlling physical behaviour of the ice mass, they also require boundary conditions for climate (spatio-temporal fields of temperature and precipitation, typically on regular grids and at monthly intervals). The behaviour of the ice sheet is highly sensitive to these fields, and there is relatively little data from geological records to constrain them as the land was covered with ice. We develop a methodology for generating a range of plausible boundary conditions, using a low-dimensional basis representation of the spatio-temporal input. We derive this basis by combining key patterns, extracted from a small ensemble of climate model simulations of the deglaciation, with sparse spatio-temporal observations. By jointly varying the ice sheet parameters and basis vector coefficients, we run ensembles of the Glimmer ice sheet model that simultaneously explore both climate and ice sheet model uncertainties. We use these to calibrate the ice sheet physics and boundary conditions for Glimmer, by ruling out regions of the joint coefficient and parameter space via history matching. We use binary ice/no ice observations from reconstructions of past ice sheet margin position to constrain this space by introducing a novel metric for history matching to binary data.
Forest fires are the outcome of a complex interaction between environmental factors, topography and socioeconomic factors (Bedia et al, 2014). Therefore, understand causality and early prediction are crucial elements for controlling such phenomenon a nd saving lives.The aim of this study is to build spatio-temporal model to understand causality of forest fires in Europe, at NUTS2 level between 2012 and 2016, using environmental and socioeconomic variables.We have considered a disease mapping approach, commonly used in small area studies to assess thespatial pattern and to identify areas characterised by unusually high or low relative risk.
Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurat e testing for significance in neural activity. The high dimensionality of this type of data (on the order of hundreds of thousands of voxels) poses serious modeling challenges and considerable computational constraints. For the sake of feasibility, standard models typically reduce dimensionality by modeling covariance among regions of interest (ROIs) -- coarser or larger spatial units -- rather than among voxels. However, ignoring spatial dependence at different scales could drastically reduce our ability to detect activation patterns in the brain and hence produce misleading results. To overcome these problems, we introduce a multi-resolution spatio-temporal model and a computationally efficient methodology to estimate cognitive control related activation and whole-brain connectivity. The proposed model allows for testing voxel-specific activation while accounting for non-stationary local spatial dependence within anatomically defined ROIs, as well as regional dependence (between-ROIs). Furthermore, the model allows for detection of interpretable connectivity patterns among ROIs using the graphical Least Absolute Shrinkage Selection Operator (LASSO). The model is used in a motor-task fMRI study to investigate brain activation and connectivity patterns aimed at identifying associations between these patterns and regaining motor functionality following a stroke.
151 - Sepideh Mosaferi 2019
Despite of the great efforts during the censuses, occurrence of some nonsampling errors such as coverage error is inevitable. Coverage error which can be classified into two types of under-count and overcount occurs when there is no unique bijective (one-to-one) mapping between the individuals from the census count and the target population -- individuals who usually reside in the country (de jure residences). There are variety of reasons make the coverage error happens including deficiencies in the census maps, errors in the field operations or disinclination of people for participation in the undercount situation and multiple enumeration of individuals or those who do not belong to the scope of the census in the overcount situation. A routine practice for estimating the net coverage error is subtracting the census count from the estimated true population, which obtained from a dual system (or capture-recapture) technique. Estimated coverage error usually suffers from significant uncertainty of the direct estimate of true population or other errors such as matching error. To rectify the above-mentioned problem and predict a more reliable coverage error rate, we propose a set of spatio-temporal mixed models. In an illustrative study on the 2010 census coverage error rate of the U.S. counties with population more than 100,000, we select the best mixed model for prediction by deviance information criteria (DIC) and conditional predictive ordinate (CPO). Our proposed approach for predicting coverage error rate and its measure of uncertainty is a full Bayesian approach, which leads to a reasonable improvement over the direct coverage error rate in terms of mean squared error (MSE) and confidence interval (CI) as provided by the U.S. Census Bureau.
Statistical models used to estimate the spatio-temporal pattern in disease risk from areal unit data represent the risk surface for each time period with known covariates and a set of spatially smooth random effects. The latter act as a proxy for unm easured spatial confounding, whose spatial structure is often characterised by a spatially smooth evolution between some pairs of adjacent areal units while other pairs exhibit large step changes. This spatial heterogeneity is not consistent with existing global smoothing models, in which partial correlation exists between all pairs of adjacent spatial random effects. Therefore we propose a novel space-time disease model with an adaptive spatial smoothing specification that can identify step changes. The model is motivated by a new study of respiratory and circulatory disease risk across the set of Local Authorities in England, and is rigorously tested by simulation to assess its efficacy. Results from the England study show that the two diseases have similar spatial patterns in risk, and exhibit a number of common step changes in the unmeasured component of risk between neighbouring local authorities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا