ﻻ يوجد ملخص باللغة العربية
Statistical models used to estimate the spatio-temporal pattern in disease risk from areal unit data represent the risk surface for each time period with known covariates and a set of spatially smooth random effects. The latter act as a proxy for unmeasured spatial confounding, whose spatial structure is often characterised by a spatially smooth evolution between some pairs of adjacent areal units while other pairs exhibit large step changes. This spatial heterogeneity is not consistent with existing global smoothing models, in which partial correlation exists between all pairs of adjacent spatial random effects. Therefore we propose a novel space-time disease model with an adaptive spatial smoothing specification that can identify step changes. The model is motivated by a new study of respiratory and circulatory disease risk across the set of Local Authorities in England, and is rigorously tested by simulation to assess its efficacy. Results from the England study show that the two diseases have similar spatial patterns in risk, and exhibit a number of common step changes in the unmeasured component of risk between neighbouring local authorities.
Tropical cyclones (TCs), driven by heat exchange between the air and sea, pose a substantial risk to many communities around the world. Accurate characterization of the subsurface ocean thermal response to TC passage is crucial for accurate TC intens
Functional Magnetic Resonance Imaging (fMRI) is a primary modality for studying brain activity. Modeling spatial dependence of imaging data at different scales is one of the main challenges of contemporary neuroimaging, and it could allow for accurat
The novel coronavirus disease (COVID-19) has spread rapidly across the world in a short period of time and with a heterogeneous pattern. Understanding the underlying temporal and spatial dynamics in the spread of COVID-19 can result in informed and t
Forest fires are the outcome of a complex interaction between environmental factors, topography and socioeconomic factors (Bedia et al, 2014). Therefore, understand causality and early prediction are crucial elements for controlling such phenomenon a
Existing studies consider Alzheimers disease (AD) a comorbidity of epilepsy, but also recognize epilepsy to occur more frequently in patients with AD than those without. The goal of this paper is to understand the relationship between epilepsy and AD