ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum error correction failure distributions: comparison of coherent and stochastic error models

73   0   0.0 ( 0 )
 نشر من قبل David Clader
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault tolerant quantum error correcting circuit for a $d=3$ Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudo-threshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.



قيم البحث

اقرأ أيضاً

119 - Qinghong Yang , Dong E. Liu 2021
We study the performance of quantum error correction codes(QECCs) under the detection-induced coherent error due to the imperfectness of practical implementations of stabilizer measurements, after running a quantum circuit. Considering the most promi sing surface code, we find that the detection-induced coherent error will result in undetected error terms, which will accumulate and evolve into logical errors. However, we show that this kind of errors will be alleviated by increasing the code size, akin to eliminating other types of errors discussed previously. We also find that with detection-induced coherent errors, the exact surface code becomes an approximate QECC.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real ize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
We consider error correction in quantum key distribution. To avoid that Alice and Bob unwittingly end up with different keys precautions must be taken. Before running the error correction protocol, Bob and Alice normally sacrifice some bits to estima te the error rate. To reduce the probability that they end up with different keys to an acceptable level, we show that a large number of bits must be sacrificed. Instead, if Alice and Bob can make a good guess about the error rate before the error correction, they can verify that their keys are similar after the error correction protocol. This verification can be done by utilizing properties of Low Density Parity Check codes used in the error correction. We compare the methods and show that by verification it is often possible to sacrifice less bits without compromising security. The improvement is heavily dependent on the error rate and the block length, but for a key produced by the IdQuantique system Clavis^2, the increase in the key rate is approximately 5 percent. We also show that for systems with large fluctuations in the error rate a combination of the two methods is optimal.
157 - W. Dur , H. J. Briegel 2007
We give a review on entanglement purification for bipartite and multipartite quantum states, with the main focus on theoretical work carried out by our group in the last couple of years. We discuss entanglement purification in the context of quantum communication, where we emphasize its close relation to quantum error correction. Various bipartite and multipartite entanglement purification protocols are discussed, and their performance under idealized and realistic conditions is studied. Several applications of entanglement purification in quantum communication and computation are presented, which highlights the fact that entanglement purification is a fundamental tool in quantum information processing.
106 - Zhengwei Liu 2019
Graph theory is important in information theory. We introduce a quantization process on graphs and apply the quantized graphs in quantum information. The quon language provides a mathematical theory to study such quantized graphs in a general framewo rk. We give a new method to construct graphical quantum error correcting codes on quantized graphs and characterize all optimal ones. We establish a further connection to geometric group theory and construct quantum low-density parity-check stabilizer codes on the Cayley graphs of groups. Their logical qubits can be encoded by the ground states of newly constructed exactly solvable models with translation-invariant local Hamiltonians. Moreover, the Hamiltonian is gapped in the large limit when the underlying group is infinite.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا